магнитоуправляемый контакт

Классы МПК:H01H1/66 контакты, герметизированные в вакуумированной или наполненной газом оболочке, например сухие магнитоуправляемые контакты 
Автор(ы):, , ,
Патентообладатель(и):Акционерное общество закрытого типа "Меганит"
Приоритеты:
подача заявки:
1992-07-10
публикация патента:

Изобретение относится к коммутационным элементам схем автоматизации, в частности к конструкции сухих герметизированных магнитоуправляемых контактов. Цель изобретения: устранение явлений залипания и спекания и повышение технологичности конструкции. Для этого в магнитоуправляемом контакте, содержащем герметизированный баллон, две контакт-детали, расположенные в противоположных торцах баллона, рабочая поверхность контакт-деталей снабжена регулярным микрорельефом с радиусом выступов, равным 200-300 мкм, и с числом выступов, равным 10-12 на 1 мм2 . 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

МАГНИТОУПРАВЛЯЕМЫЙ КОНТАКТ, содержащий герметизированный баллон, две контакт-детали, расположенные в торцах баллона, отличающийся тем, что рабочая поверхность контакт-деталей снабжена регулярным микрорельефом с радиусом выступов 200 - 300 мкм и числом выступов 10 - 12 на 1 мм2.

Описание изобретения к патенту

Изобретение относится к коммутационным элементам схем автоматизации, в частности к конструкциям сухих герметизированных магнитоуправляемых контактов, и может найти применение в герконах и реле на их основе, которые широко применяются в программных и логических схемах автоматики и телемеханики, сигнализации и защите, в устройствах взвешивания и управления, в автоматических распределителях, в радиоаппаратуре, телефонии, в электроаппаратуре и в других устройствах дискретного действия.

Известен магнитоуправляемый контакт [1], содержащий герметизированный баллон, две контакт-детали, расположенные в противоположных торцах герметизированного баллона, выполненные таким образом, что контактирующая часть поверхности одной контакт-детали охватывает контактирующую часть поверхности другой контакт-детали с углом охвата 100-120о, причем формы контактирующих поверхностей контакт-деталей выполнены совпадающими.

Недостатком этого контакта является повышенная возможность к залипанию и спеканию в момент контактирования, что резко снижает надежность всей конструкции магнитоуправляемого контакта в целом.

Известен магнитоуправляемый контакт [2], содержащий герметизированный баллон, две контакт-детали, расположенные в противоположных торцах герметизированного баллона, выполненные так, что выступ на подвижной контакт-детали имеет высоту меньше высоты выступа на неподвижной контакт-детали на величину b, определяемую как

b = магнитоуправляемый контакт, патент № 2024981 , где у - величина заданного межконтактного зазора;

а - расстояние между выступами;

l - длина гибкой части подвижной пружины.

Недостатком этого контакта являются искрение и микросварка контактов в момент контактирования.

Наиболее близким по технической сущности к изобретению является магнитоуправляемый контакт [3], содержащий герметизированный баллон, две контакт-детали, расположенные в противоположных торцах баллона, с покрытием на взаимно перекрывающих участках контакт-деталей, которое на поверхностях, обращенных одна к другой имеет прорези до основного материала контакт-деталей.

Недостатками известного магнитоуправляемого контакта являются технологическая сложность, дорогостоящее производство, а также то, что конструкция этого контакта не исключает явлений залипания и спекания.

Целью изобретения является устранение явлений залипания и спекания и повышение технологичности конструкции.

Это достигается тем, что в магнитоуправляемом контакте, содержащем герметизированный баллон, две контакт-детали, расположенные в противоположных торцах баллона, рабочая поверхность контакт-деталей снабжена микрорельефом с радиусом выступов, равным 200 - 300 мкм, и с числом выступов, равным 10-12 на 1 мм2.

Варьируя величиной радиуса полностью регулярного микрорельефа и числом выступов на единицу площади, можно установить (что экспериментально и было сделано) оптимальную фактическую площадь контактирования, обеспечивающую исключение таких видов контакта, как залипание и спекание и повышение ресурса работы контактной пары, а также улучшение других временных параметров, например скорости срабатывания - с 500 мкс у РЭС-82 до 60-50 мкс у предлагаемой конструкции.

При любых способах обработки (шлифование, притирка, доводка) поверхности контакт-деталей радиус выступов составляет 20-30 мкм, что ведет к таким нежелательным явлениям, как диффузия, микросварка, искрение, залипание контактов. Таким образом, высокое качество поверхности дает нежелательные эффекты. При низком качестве поверхности, т.е. при нерегулярном микрорельефе с произвольными радиусами выступов, получается контакт с непредсказуемыми (непрограммируемыми свойствами, также склонный к искрению и залипанию). Предлагаемый контакт с регулярным микрорельефом с радиусом выступов 200-300 мкм и числом выступов на 1мм2, равным 10-12, позволяет полностью исключить искрение, микросварку, залипание, спекание, диффузию и т.д.

Регулярность формы, размеров и взаимного расположения неровностей поверхностей контакт-деталей дает возможность аналитически их рассчитать как функцию различных эксплуатационных свойств, т.е. позволяет перейти к расчетному нормированию геометрических параметров микрорельефа поверхностей контакт-деталей.

Поверхность с регулярным микрорельефом, исключающую образование натиров и надиров, заедания и схватывания, а также обеспечивающую повышение таких параметров как контактная жесткость, усталостная прочность, сопротивление ползучести, коррозийная прочность, электрическая прочность, может быть получена известным методом вибронакатывания.

Указанный метод улучшает эстетические свойства поверхности, ведет к экономии металла (в том числе драгоценного), исключает термообработку, а также необходимость в покрытии, позволяет заменить ручные операции шабрения и полирования механической высокопроизводительной вибронакаткой, ведет к повышению сопротивляемости фреттинг-коррозии.

Вибронакатка осуществляется специальными виброголовками с целью образования на поверхности регулярного рисунка в виде выдавленных канавок. Во время этой операции на участках неоднородной по шероховатости поверхности с выступающими заостренными микронеровностями (с малым радиусом вершин выступов - шлифование) возникают мгновенные, огромные по величине контактные давления, что сопровождается выделением большого количества тепла и приводит к структурным изменениям на обрабатываемой поверхности. Возможность получения вибронакаткой поверхностей с заданным углом наклона боковых микровыступов позволяет использовать это явление для управления магнитными свойствами лепестков геркона. Вибронакатывание в значительной степени управляет локальной анизотропией и через нее магнитными свойствами.

Изобретение является высоко технологичным, так как позволяет за одну операцию вибронакатки сразу осуществить формирование плоской ленты для нарубки контакт-деталей с готовым регулярным микрорельефом поверхности. Контакт-детали в магнитном контакте получаются в промышленности методом раскатки проволоки (с круглым сечением) из низконикелиевых сплавов. Ее превращают в плоскую ленту заданной толщины, а в дальнейшем разрубают на отрезки, имеющие длину контакт-детали. В случае использования метода вибронакатки регулярный микрорельеф на поверхности будущих контакт-деталей создается одновременно с операцией раскатки проволоки в плоскую ленту специальными виброголовками. Последующая разрубка на отрезки требуемой длины на качество уже сформированного во время предыдущей операции регулярного микрорельефа поверхности не влияет.

В качестве материала для контакт-деталей можно использовать алюминий, что существенно снижает стоимость магнитоуправляемого контакта.

На фиг. 1 изображен магнитоуправляемый контакт; на фиг.2-4 - различные варианты наката регулярного микрорельефа поверхности контакт-деталей в увеличенном виде.

Контакт содержит стеклянный баллон 1, контакт-детали 2 и 3 с регулярным микрорельефом поверхности, магнитные катушки 4 управления.

На фиг. 2 канавки частично регулярного микрорельефа касаются одна другой, на фиг.3 канавки частичного регулярного микрорельефа пересекаются, на фиг.4 показан полностью регулярный микрорельеф.

Впаянные в стеклянный герметизированный баллон 1 контакт-детали 2 и 3, имеющие сформированный на поверхности регулярный микрорельеф, в отсутствии управляющего поля со стороны магнитных катушек 4 находятся в разомкнутом состоянии. В момент создания катушками 4 внешнего магнитного поля контакт-детали 2 и 3 приходят в соприкосновение, замыкая электрическую цепь, в которую включен данный магнитоуправляемый контакт, и обеспечивают тем самым прохождение требуемого сигнала по этой цепи. При снятии внешнего управляющего поля происходит разъединение контакт-деталей и как следствие разрыв электрической цепи, в которую включен магнитоуправляемый контакт.

Совокупность общих и отличительных признаков изобретения обеспечивает высокую надежность работы контакта за счет исключения явлений залипания и спекания контактов.

Класс H01H1/66 контакты, герметизированные в вакуумированной или наполненной газом оболочке, например сухие магнитоуправляемые контакты 

поляризованный геркон и поляризованное коммутационное устройство -  патент 2474000 (27.01.2013)
магнитоуправляемый контакт -  патент 2470401 (20.12.2012)
способ изготовления геркона с контролируемыми параметрами азотируемого слоя -  патент 2467425 (20.11.2012)
герметизированное контактное устройство -  патент 2460165 (27.08.2012)
способ изготовления геркона с карбонитрированными контактными поверхностями -  патент 2457567 (27.07.2012)
магнитоуправляемый герметизированный контакт -  патент 2435243 (27.11.2011)
способ изготовления геркона с азотированными контакт-деталями -  патент 2393570 (27.06.2010)
магнитоуправляемый герметизированный контакт -  патент 2391733 (10.06.2010)
магнитоуправляемый контакт -  патент 2304817 (20.08.2007)
контактное покрытие магнитоуправляемых контактов -  патент 2279149 (27.06.2006)
Наверх