устройство для контроля параметров диэлектрических материалов

Классы МПК:G01N22/00 Исследование или анализ материалов с использованием сверхвысоких частот
Автор(ы):,
Патентообладатель(и):Сибирский физико-технический институт им.В.В.Кузнецова при Томском государственном университете им.В.В.Куйбышева
Приоритеты:
подача заявки:
1990-10-29
публикация патента:

Изобретение предназначено для контроля толщины, диэлектрической проницаемости и других параметров пленочных и листовых диэлектрических материалов. Целью изобретения является повышение точности контроля в условиях температурной нестабильности и механической вибрации резонатора. Устройство содержит открытый СВЧ-резонатор и измеритель его резонансной частоты. Для достижения цели изобретения в него введены катушка индуктивности, укрепленная на первом зеркале резонатора, последовательно подсоединенные к ней измеритель индуктивности и два дифференциальных усилителя и источник опорного напряжения. С целью дальнейшего повышения точности контроля по крайней мере часть второго зеркала открытого резонатора выполнена из ферромагнетика. 1 з.п. ф-лы, 2 ил.
Рисунок 1, Рисунок 2

Формула изобретения

1. УСТРОЙСТВО ДЛЯ КОНТРОЛЯ ПАРАМЕТРОВ ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ, содержащее открытый сверхвысокочастотный резонатор, образованный двумя зеркалами и служащий для размещения исследуемого образца, выход открытого сверхвысокочастотного резонатора соединен с измерителем резонансной частоты, отличающееся тем, что, с целью повышения точности в условиях температурной нестабильности и механической вибрации резонатора, введены последовательно соединенные катушка индуктивности, расположенная на зеркале резонатора, измеритель индуктивности, первый и второй дифференциальные усилители, второй вход последнего соединен с выходом измерителя резонансной частоты, а выход является выходом устройства, второй вход первого дифференциального усилителя соединен с выходом введенного источника опорного напряжения.

2. Устройство по п.1, отличающееся тем, что часть второго зеркала резонатора выполнена из ферромагнетика.

Описание изобретения к патенту

Изобретение относится к области измерительной техники диапазона сверхвысоких частот (СВЧ) и может быть использовано для контроля листовых и пленочных материалов полимерных пленок, бумаги и т.п. в процессе их изготовления.

Известны устройства для контроля параметров диэлектрических материалов, содержащих СВЧ-генератор, открытый резонатор, детектор и механизм перемещения зеркала [1] в которых частота резонатора с объектом контроля механически перестраивается до значения частоты, соответствующей пустому резонатору, и параметры объекта определяются по измеренной таким образом разности длин резонатора.

Наиболее близким по технической сущности к изобретению является устройство для контроля параметров диэлектрических материалов [2] содержащее открытый СВЧ-резонатор постоянной длины и подключенный к нему измеритель резонансной частоты. Параметры материала пленки определяются по значениям частотной расстройки резонатора, вносимой контролируемым объектом.

Недостатком данного устройства является малая точность измерений в условиях механических вибраций резонатора и изменений температуры креплений зеркал. Неконтролируемые изменения расстояния между зеркалами создают сдвиги резонансных частот резонатора, аналогичные тем, которые вызываются изменениями измеряемых параметров материалов, что снижает точность контроля.

Цель изобретения повышение точности в условиях температурной нестабильности и механической вибрации резонатора.

Для достижения данной цели в устройство для контроля параметров диэлектрических материалов, содержащее открытый СВЧ-резонатор, образованный двумя зеркалами, который служит для размещения исследуемого образца, выход открытого СВЧ-резонатора соединен с измерителем резонансной частоты, введены последовательно соединенные катушка индуктивности, расположенная на зеркале резонатора, измеритель индуктивности, первый и второй дифференциальные усилители, второй вход которого соединен с выходом измерителя резонансной частоты, а выход является выходом устройства, второй вход первого дифференциального усилителя соединен с выходом введенного источника опорного напряжения.

Изобретение поясняется фиг.1 и 2.

На фиг.1 представлена структурная схема предлагаемого устройства.

Устройство содержит открытый СВЧ-резонатор, образованный зеркалами 1 и 2, измеритель резонансной частоты 3, соединенный с открытым резонатором, например волноводом 4, катушку индуктивности 5, измеритель индуктивности 6, источник опорного напряжения 7, первый дифференциальный усилитель 8 и второй дифференциальный усилитель 9. Катушка 5 подключена ко входу измерителя индуктивности 6. Выход измерителя резонансной частоты 3 подключен ко входу 2 дифференциального усилителя 8, выход измерителя индуктивности 6 подключен ко входу 1 усилителя 9, источник опорного напряжения 7 ко входу 2 этого усилителя. Выход усилителя 9 подключен ко входу 1 усилителя 8. Контролируемый диэлектрический листовой материал 10 располагается в пространстве между зеркалами 1 и 2. Катушка 5 укреплена, например, на зеркале 1.

В качестве измерителя резонансной частоты может быть использован, например, СВЧ-генератор, настроенный на склон резонансной кривой резонатора, и детектор прошедшей или отраженной СВЧ мощности. В качестве измерителя индуктивности может быть использована аналогичная схема в низкочастотном исполнении, содержащая на входе фиксированную емкость, составляющую с измеряемой индуктивностью колебательный контур.

В основе работы устройства лежит сопоставление сигнала с выхода измерителя 3, пропорционального изменениям резонансной частоты резонатора и зависящего как от изменений параметров материала, так и от случайных изменений расстояния между зеркалами 1 и 2, с сигналом изменения индуктивности катушки 5, зависящим благодаря выполнению зеркала 2 металлическим от расстояния между зеркалами 1 и 2. Установлено, что изменения параметров (толщины, диэлектрической проницаемости) листовых диэлектрических материалов, расположенных между вторым зеркалом и катушкой, на индуктивность последней не влияет.

В отсутствие источников вибрации и температурных изменений измеритель резонансной частоты 3 калибруется в значениях контролируемого параметра (например, диэлектрической проницаемости материала определенной толщины) при некотором фиксированном расстоянии do между зеркалами 1 и 2. Этому значению расстояния между зеркалами соответствует некоторое значение индуктивности Lo катушки 5 и, соответственно, некоторое значение напряжения сигнала Uo на выходе измерителя индуктивности 6, подаваемое на вход 1 усилителя 9. С помощью источника опорного напряжения 7 на выходе 2 усилителя 9 устанавливается точно такое же напряжение, как и на входе 1 Uo. При этом сигнал на выходе усилителя 9 и, соответственно, на входе 1 усилителя 8 при калибровке измерителя резонансной частоты 3 равен нулю.

Устройство работает следующим образом.

Изменение диэлектрической проницаемости материала 10 приводит к изменению резонансной частоты резонатора. Это изменение резонансной частоты фиксируется измерителем 3 и в виде соответствующего сигнала поступает на вход 2 усилителя 8. Одновременно под действием механических вибраций и температурных изменений элементов конструкции резонатора изменяется расстояние между его зеркалами 1 и 2, что также приводит к изменению резонансной частоты и дополнительной составляющей сигнала на входе 2 усилителя 8.

Изменение расстояния между зеркалами 1 и 2 приводит также и к изменению индуктивности катушки 5 и, соответственно, к изменению напряжения на выходе измерителя 6. Баланс напряжений на входе усилителя 9 нарушается, и на его выходе образуется сигнал, пропорциональный изменению расстояния между зеркалами 1 и 2 относительно расстояния do, соответствовавшего условиям калибровки. Поступая на вход 1 усилителя 8, этот сигнал компенсирует составляющую выходного сигнала измерителя 3, связанную с изменением расстояния между зеркалами 1 и 2 резонатора. В итоге сигнал на выходе усилителя 8 содержит только составляющую, пропорциональную изменению диэлектрической проницаемости материала, что повышает точность контроля. При переходе к другой толщине контролируемого материала изменяется величина do и, соответственно, Uo.

Аналогична работа данного устройства при использовании его для контроля толщины листового диэлектрика с фиксированной диэлектрической проницаемостью, для контроля влажности, однородности структуры.

С целью дальнейшего повышения точности в условиях температурной нестабильности и механических вибраций часть второго зеркала резонатора выполнена из ферромагнетика.

На фиг. 2 изображены зависимости индуктивности катушки от расстояния до латунной (кривая 1) и стальной (кривая 2) пластины, расположенной перпендикулярно продольной оси катушки.

С помощью источника опорного напряжения 7 устройство калибруется при некотором фиксированном расстоянии do между зеркалами 1 и 2. Резонансная частота резонатора меняется при изменении как параметров контролируемого материала, так и расстояния между зеркалами 1 и 2. Соответствующий сигнал с выхода измерителя 3 поступает на второй вход усилителя 8, в котором сравнивается с сигналом изменения индуктивности катушки 5, поступающим с выхода измерителя 6 через усилитель 9 на первый вход усилителя 8. Изменение параметров материала 10 на индуктивность катушки 5 не влияет, и сигнал на выходе измерителя 6 зависит только от расстояния между зеркалами 1 и 2, что позволяет компенсировать паразитную составляющую сигнала измерителя 3. Зеркала открытых СВЧ резонаторов изготавливаются преимущественно из немагнитных материалов с высокой удельной проводимостью. Предлагаемое в устройстве выполнение части второго зеркала из ферромагнетика, например из стали, значительно увеличивает чувствительность индуктивности катушки к изменению расстояния между зеркалами резонатора.

Таким образом, данное техническое решение позволяет за счет увеличения чувствительности индуктивности катушки к механическим вибрациям и температурной нестабильности конструкций резонатора и, одновременно, сохранения высокой добротности резонатора повысить точность контроля параметров диэлектрических материалов.

Технико-экономическая эффективность предложенного устройства заключается в предотвращении ложных срабатываний диагностических устройств, повышении качества листовых и пленочных материалов и экономии сырья.

Класс G01N22/00 Исследование или анализ материалов с использованием сверхвысоких частот

резонансное устройство для ближнеполевого свч-контроля параметров материалов -  патент 2529417 (27.09.2014)
устройство для измерения свойства диэлектрического материала -  патент 2528130 (10.09.2014)
контрольное устройство миллиметрового диапазона -  патент 2521781 (10.07.2014)
система и способ досмотра субъекта -  патент 2517779 (27.05.2014)
способ определения электропроводности и толщины полупроводниковых пластин или нанометровых полупроводниковых слоев в структурах "полупроводниковый слой - полупроводниковая подложка" -  патент 2517200 (27.05.2014)
способ определения электропроводности и энергии активации примесных центров полупроводниковых слоев -  патент 2516238 (20.05.2014)
антенна-аппликатор и устройство для определения температурных изменений внутренних тканей биологического объекта путем одновременного неинвазивного измерения яркостной температуры внутренних тканей на разных глубинах -  патент 2510236 (27.03.2014)
способ измерения комплексной диэлектрической проницаемости жидких и сыпучих веществ -  патент 2509315 (10.03.2014)
свч способ обнаружения и оценки неоднородностей в диэлектрических покрытиях на металле -  патент 2507506 (20.02.2014)
способ обнаружения и идентификации взрывчатых и наркотических веществ и устройство для его осуществления -  патент 2507505 (20.02.2014)
Наверх