способ регулирования разработки нефтяного месторождения с разнопроницаемыми пластами

Классы МПК:E21B43/24 с применением тепла, например нагнетанием пара
E21B33/138 глинизация стенок скважины, закачивание цемента в поры и трещины породы 
Автор(ы):, , , , , , ,
Патентообладатель(и):Институт химии нефти СО РАН,
Всероссийский нефтегазовый научно-исследовательский институт
Приоритеты:
подача заявки:
1992-06-30
публикация патента:

Способ регулирования разработки нефтяного месторождения с разнопроницаемыми пластами. При температуре пласта 70-90oС или в результате предварительного нагрева пласта до этой температуры в него закачивают водный раствор карбамида и соли алюминия, с концентрациями, обеспечивающими образование непосредственно в пласте объемного геля. 4 ил., 2 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6

Формула изобретения

Способ регулирования разработки нефтяного месторождения с разнопроницаемыми пластами, включающий закачку в пласт водных растворов карбамида и соли алюминия, отличающийся тем, что при температуре пласта 70-90oС или путем предварительного нагрева пласта до этой температуры в него закачивают водный раствор карбамида и соли алюминия с концентрациями, обеспечивающими образование непосредственно в пласте объемного геля.

Описание изобретения к патенту

Изобретение относится к регулированию разработки нефтяных месторождений физико-химическими методами с использованием теплового воздействия и может быть использовано в нефтедобывающей промышленности. Существуют методы селективной изоляции высокопроницаемых зон пласта путем образования в пласте свободно- или связнодисперсных систем, таких как золи, эмульсии, пены и пр. Все эти методы базируются на последовательной закачке оторочек химреагентов с расчетом на их смешение в определенном месте пласта, что оказалось малоуспешным в промысловых экспериментах [3]

Известен способ выравнивания проницаемости неоднородного пласта путем образования в высокопроницаемых зонах геля кремниевой кислоты за счет закачки в пласт кремнийорганических реагентов. В этом случае процесс воздействия по толщине пласта становится регулируемым, охват тепловым воздействием увеличивается и соответственно увеличивается нефтеотдача [2]

Недостатком способа является образование в пласте хрупкого геля конденсационно-кристаллизационной структуры, что определяет необходимость частых повторных обработок для восстановления селективной блокады. Кроме того, закачиваемый химреагент однофункционален и не создает побочных положительных эффектов, что явно недостаточно для современной практики разработки месторождений.

Наиболее близким к заявляемому является способ изоляции водонасыщенных пластов в эксплуатационных скважинах и выравнивания фронта нагнетания воды в нагнетательных скважинах, включающий закачку карбамида и солей алюминия, способных при указанных условиях образовывать нерастворимые осадки (в виде хлопьев) в результате взаимодействия с продуктами разложения карбамида [3] Получаемые осадки или хлопья способны закупоривать поры породы-коллектора, однако указанный способ не обеспечивает достаточного снижения проницаемости породы-коллектора по воде, кроме того в этом случае изоляция не является селективной, так как снижается проницаемость коллектора как по воде, так и по нефти.

Целью изобретения является повышение нефтеотдачи за счет увеличения охвата пласта воздействием путем селективной изоляции высокопроницаемых пластов или пропластков.

Поставленная цель достигается тем, что при разработке нефтяного месторождения с разнопроницаемыми пластами или пропластками, в пласт закачивают водный раствор с содержанием карбамида 5 30 мас. и соли алюминия 2,8 17 мас. (гелеобразующая система ГАЛКА), образующий объемный гель непосредственно в пласте, причем температура на забое скважины, в которую закачивается раствор, не должна быть выше 90oС, а при закачке раствора в добывающую скважину не ниже 70oС. В случае, когда закачка водного раствора соли алюминия и карбамида производится при температуре на забое скважины ниже 70oС необходим предварительный нагрев пласта до температуры выше 70oС.

Возможность увеличения охвата пластов путем селективной изоляции высокопроницаемых пластов основана на свойствах системы соль алюминия - карбамид вода в указанном диапазоне концентраций и при определенных соотношениях компонентов непосредственно в пористой среде образовывать гель, являющийся псевдопластичным телом с резко выраженной тиксотропией. Образование геля приводит к снижению подвижности воды в водо- и нефтенасыщенных образцах породы-коллектора в 4 36 раз, при этом подвижность нефти превышает подвижность воды или находится на одном уровне.

Показано, что время гелеобразования практически не зависит от концентрации соли алюминия, а в основном определяется температурой и соотношением концентраций соли алюминия и карбамида в гелеобразующем растворе. Растворы соли алюминия без карбамида гелей и золой не образуют. В таблице 1 приведены типичные результаты, указывающие на отсутствие влияния кратности разбавления на время гелеобразования для серии растворов, полученных из исходного гелеобразующего раствора состава: 30 мас. АlСl3способ регулирования разработки нефтяного месторождения с   разнопроницаемыми пластами, патент № 20618562O (16,6 мас. AlCl3 в расчете на безводный AlCl3) + 30 мас. CO(NH2)2+ 40 маc. Н2О, последовательным разбавлением вдвое каждого раствора сеноманской водой. Температура опыта 70oС.

Cогласно результатам опытов, время гелеобразования это время, начиная с которого очень быстро, в течение нескольких минут, сразу во всем объеме раствора образуется гель.

Температуры 70 90oС являются оптимальными в технологических приемах реализации заявляемого способа (табл. 2).

Способ осуществляется с использованием как естественной тепловой энергии горных пород (начальная температура пласта не ниже 70oС), так и внесенной в пласт или генерированной в пласте тепловой энергии.

При использовании только естественной тепловой энергии горных пород и применении методов разработки, понижающих пластовую температуру ниже 70oС (например, нагнетание ненагретой воды), закачка гелеобразующего раствора производится в нагнетательную скважину перед основным методом воздействия. Если возникает потребность в блокаде высокопроницаемых зон в процессе разработки, то перед введением в пласт гелеобразующего раствора необходимы операции по повышению температуры до 70 90oС в объеме установки блокировочного экрана. Это может быть закачка нагретой воды, пара, окислителя, хим. реагентов и пр.

Способ предполагает многообразие комбинаций закачки агентов и реализуется в одной из модификаций следующим образом.

Любым известным способом создается тепловая оторочка и перемещается в пласт на проектное расстояние. Это может быть закачка в пласт горячей воды, пара, воздуха и воды (внутрипластовое горение). Перемещение созданной тепловой оторочки может осуществляться ненагретой или нагретой водой, водовоздушной смесью, углеводородными газами и пр. Затем в пласт закачивают гелеобразующий раствор указанного состава. Все операции проводятся в нагнетательной скважине. Продолжительность стадии нагнетания гелеобразующего раствора определяется по факту выравнивания профиля приемистости нагнетательной скважины, снижения обводненности продукции добывающих скважин, увеличения давления нагнетания. После этого вновь переходят на режим перемещения тепловой оторочки. Ограничение по температуре в 90oС на забое нагнетательной скважины объясняется необходимостью подвергнуть селективной блокаде продолжительную зону высокопроницаемого пласта, поскольку при более высокой температуре время гелеобразования резко сокращается, и объем блокады может ограничиться призабойной зоной (табл. 2).

Возможно нагнетание гелеобразующего раствора перед тепловым воздействием. Объем нагнетания раствора распределяется по пластам пропорционально их проницаемостям. В этом случае целесообразно использовать нестационарный режим фильтрации, когда распределение объема раствора по пластам пропорционально квадратам проницаемостей. При последующем тепловом воздействии вследствие тепловой интерференции пластов произойдет образование геля преимущественно в высокопроницаемой зоне и выравнивание проницаемостей по толщине залежи. Объемы нагнетания раствора на 1 м толщины пласта определяются экспериментально, исходя из конкретных физико-химических свойств коллектора и насыщающих флюидов.

При прорывах теплового фронта к добывающей скважине резко возрастает обводненность продукции, снижается эффективность использования в пласте тепловой энергии и возникают сложности с эксплуатацией скважинного оборудования.

Поэтому целесообразен временный перевод скважины под нагнетание гелеобразующего раствора. Продолжительность этой стадии определяется объемом блокирующего экрана, позволяющим снизить обводненность и выровнять профиль притока к скважине. Интервал температур 70 90oС, при котором необходимо осуществлять закачку раствора, определяется из соображений постановки экрана в некотором отдалении от скважины. Оптимальный интервал температур определен экспериментально (табл.2) и отвечает условиям поставленной задачи.

Аналогичную операцию можно проводить при циклических тепловых обработках добывающих скважин после первого цикла термообработки. Экспериментальное обоснование способа проводилось на линейных насыпных и составных моделях пласта из природного кернового материала при температурах 70 90oС. Показано, что гель снижает проницаемость породы по жидкости в 4 35 раз, причем степень снижения проницаемости тем больше, чем выше исходная проницаемость породы, которую она имела до формирования в ней геля, при этом проницаемость породы по нефти превышает проницаемость по воде или находится на одном уровне. В тех же условиях прототип снижает проницаемость породы и по воде, и по нефти в 2 раза. То есть эффективность заявляемого способа существенно выше, чем прототипа.

Изучение нефтевытесняющих свойств проводилось на фильтрационной установке УИПК-1M с использованием природного кернового материала в условиях доотмыва нефти и первичного вытеснения на неоднородных моделях пласта, состоящих из двух параллельных колонок с общим входом и раздельным выходом, с проницаемостью в пределах от 0,064 до 0,880 мкм. Проницаемости колонок различались в 2,5 6 раз.

В условиях доотмыва остаточной нефти из неоднородной модели пласта гелеобразующая система ГАЛКА входила преимущественно в высокопроницаемую колонку (в соотношении 15 1), в результате подвижность воды при фильтрации через эту колонку снизилась в 5 раз, что привело к перераспределению фильтрационных потоков и довытеснению остаточной нефти из низкопроницаемой колонки. В результате коэффициент вытеснения нефти по низкопроницаемой колонке увеличился с 22 до 63% а в целом по неоднородной модели пласта с 51 до 68% то есть на 17%

В опыте по первичному вытеснению нефти объемы закачки гелеобразующей системы ГАЛКА в колонки с более высокой и более низкой проницаемостью находились в соотношении 2,8 1. Это привело к выравниванию профиля приемистости модели, и объемы воды, закачанной после гелеобразующей композиции, находились в соотношении 1,25 1. В результате были достигнуты высокие коэффициенты вытеснения 71,2 и 79,9% в целом по модели 75,1% Следует отметить, что по более низкопроницаемой колонке был достигнут больший коэффициент вытеснения.

Эффективность предлагаемого способа апробирована в промысловых условиях на опытных участках пласта Ю1 Ершового, Лаc-Егaнского и Нивагальского месторождений Западной Сибири при температурах на забое скважины 72, 80, 90oС.

Пример 1. В нагнетательную скважину 2770 пласта Ю1 Нивагальского месторождения с пластовой температурой 90oС закачивают 50 тонн водного раствора алюминия хлористого и карбамида с концентрациями 4 мас. и 16 мас. соответственно. Раствор готовят путем растворения 2 т АlСl33 безводного и 7,5 т карбамида в 40,5 т закачиваемой воды. После этого в скважину закачивают 100 т воды и останавливают закачку для образования геля непосредственно в пласте. Через 3 суток продолжают нагнетание воды. В результате происходит снижение обводненности продукции и увеличение дебитов по нефти добывающих скважин 2213, 2237, 2238, 3078, гидродинамически связанных с нагнетательной (фиг. 3,4).

Показано, что для реализации способа в промысловых условиях обводненность продукции добывающих скважин снижается на 5-53% увеличиваются дебиты нефти по добывающим скважинам (фиг. 1-4). Продолжительность эффекта превышает год, без дополнительных закачек гелеобразующей системы.

Таким образом, предлагаемый способ приводит к увеличению охвата неоднородного пласта заводнением, селективной изоляции высокопроницаемых пластов, выравниванию профиля приемистости и увеличению нефтеотдачи неоднородных пластов. Способ может быть использован как на ранней, так и на поздней стадии разработки месторождений. 2

Класс E21B43/24 с применением тепла, например нагнетанием пара

системы для обработки подземного пласта с циркулируемой теплопереносящей текучей средой -  патент 2529537 (27.09.2014)
способ термошахтной разработки месторождения высоковязкой нефти по одногоризонтной системе -  патент 2529039 (27.09.2014)
способ добычи газа из газовых гидратов -  патент 2528806 (20.09.2014)
способ разработки изометрических залежей природного битума -  патент 2528760 (20.09.2014)
способ разработки участка нефтяного месторождения -  патент 2528310 (10.09.2014)
способ разработки месторождения сверхвязкой нефти -  патент 2527984 (10.09.2014)
способ (варианты) и система регулирования эксплуатационной температуры в стволе скважины -  патент 2527972 (10.09.2014)
способ разработки залежей высоковязких нефтей или битумов при тепловом воздействии -  патент 2527051 (27.08.2014)
способ разработки залежи высоковязкой и тяжелой нефти с термическим воздействием -  патент 2526047 (20.08.2014)
устройство для разработки залежи сверхвязкой нефти -  патент 2525891 (20.08.2014)

Класс E21B33/138 глинизация стенок скважины, закачивание цемента в поры и трещины породы 

селективный состав для ремонтно-изоляционных работ в нефтяных и газовых скважинах -  патент 2529080 (27.09.2014)
состав для изоляции притока воды в добывающие нефтяные скважины -  патент 2527996 (10.09.2014)
улучшенные способы размещения и отклонения текучих сред в подземных пластах -  патент 2527988 (10.09.2014)
состав для ликвидации перетоков флюидов за эксплуатационными колоннами в нефтегазовых скважинах -  патент 2527443 (27.08.2014)
способ разработки залежей высоковязких нефтей или битумов при тепловом воздействии -  патент 2527051 (27.08.2014)
способ изоляции водопроявляющих пластов при строительстве скважины -  патент 2526061 (20.08.2014)
состав для изоляции водопритока в скважине -  патент 2526039 (20.08.2014)
способ ограничения водопритока в скважину -  патент 2525079 (10.08.2014)
гипсомагнезиальный тампонажный раствор -  патент 2524774 (10.08.2014)
тампонажный облегченный серосодержащий раствор -  патент 2524771 (10.08.2014)
Наверх