способ переработки газоконденсата

Классы МПК:C10G35/095 содержащими кристаллические алюмосиликаты, например молекулярные сита
Патентообладатель(и):Мельников Вячеслав Борисович
Приоритеты:
подача заявки:
1994-11-18
публикация патента:

Использование: нефтехимия. Сущность: от газоконденсата отделяют газ. Нестабильный газоконденсат подвергают контактированию с цеолитсодержащим катализатором при 250 - 430oC, давлении 0,1 - 1,5 МПа. Катализат подвергают ректификации с получением топливных фракций. Используют предпочтительно катализатор состава, % мас: цеолит Y с мольным отношением SiO2/Al2O3 от 4,0 до 8,0 - 0,05 - 5,0, высококремнеземный цеолит с мольным отношением SiO2/Al2O3 от 20,0 до 100,0 - 0,05 - 85,0, матрица - остальное. Облагораживание проводят при объемной скорости подачи сырья 0,5 - 3,5 м33способ переработки газоконденсата, патент № 2068870ч. Ректификацию проводят в присутствии газообразных продуктов процесса облагораживания и/или газов ректификации. 3 з.п. ф-лы, 2 табл., 1 ил.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

1. Способ переработки газоконденсата, включающий отделение газа от жидкой фазы, переработку полученного нестабильного конденсата в моторные топлива с использованием процессов каталитического облагораживания и ректификации, отличающийся тем, что облагораживанию подвергают непосредственно нестабильный конденсат в присутствий цеолитсодержащего катализатора при 250 430oС, 0,1 1,5 МПа, после чего катализат подвергают ректификации с отбором целевых топливных фракций.

2. Способ по п. 1, отличающийся тем, что облагораживание проводят в присутствии цеолитсодержащего катализатора состава, мас.

Цеолит типа V с молярным отношением SiO2/Аl2O3 4 8 - 0,05 5,0

Высококремнеземный цеолит с молярным отношением SiO2/Al2O3 20 100 0,05 85,0

Матрица Остальное

3. Способ по п.1, отличающийся тем, что каталитическое облагораживание проводят при объемной скорости подачи сырья 0,5 3,5 м33способ переработки газоконденсата, патент № 2068870ч.

4. Способ по п.1, отличающийся тем, что ректификацию катализата проводят в присутствии газообразных продуктов, образующихся в процессе каталитического облагораживания, и/или газов ректификации.

Описание изобретения к патенту

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, а именно к переработке газоконденсата с получением моторных топлив, а также топлив, образованных смешением отдельных фракций, выделенных из газоконденсата.

Известные способы переработки углеводородного сырья, добываемого из скважин, включают в себя две стадии. Первая стадия обработка на промыслах, задачей которой является подготовка продукции скважин к транспортировке для последующей переработки на заводских установках. Вторая стадия переработка подготовленного сырья на нефтеперерабатывающих заводах, включая первичные и вторичные процессы переработки (И.А.Гуревич "Технология переработки нефти и газа", ч. I, M. Химия, 1972, с. 153 198).

К вторичным процессам переработки углеводородного сырья в топлива относятся такие основные процессы как процессы риформинга прямогонных бензинов, бензинолигроиновых фракций, крекинг нефтяных фракций, выкипающих более 200oC (См. А.И.Владимиров "Установки каталитического риформинга", М. 1993, с. 8 26). Известны различные схемы организации вторичных процессов (риформинга) с использованием различного углеводородного сырья и каталитических систем.

Так, например, известен способ повышения качества бензинолигроиновых фракций, включающий фракционирование исходного сырья нафты на легкую фракцию и тяжелую фракцию. Тяжелую фракцию подвергают риформингу ароматики и октановое число.

Часть потока риформинга смешивают с легкой фракцией и подвергают риформингу на цеолитсодержащем катализаторе ZS M-5. Получают поток углеводородов, обогащенной ароматикой, который могут быть разделены на фракции. (Патент Великобр. N 2034351, C 10 F 59/00, 1980).

Известен также способ получения высокооктанового бензина из тяжелой бензиновой фракции выкипающей в интервале 140 180oC путем многоступенчатого каталитического риформинга с последующей ректификацией полученных жидких продуктов, причем ректификацию жидких продуктов риформинга ведут с выделением головкой фракции выкипающей от начала кипения до 130 - 160oC и остаточной, выкипающей от 130 160oC до конца кипения и с последующим их смешением в определенном соотношении. (Авт. свид. N 1766945, C 10 G 35/04, 16.10.1989).

В известных способах получения высокооктановых бензинов, осуществляемых в заводских условиях, в качестве исходного сырья используются углеводородные фракции, получение которых из газонефтяного сырья предусматривает множество технологических операций, что усложняет технологию процесса в целом.

Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ переработки газоконденсата в моторные топлива, предусматривающий отделение газа от конденсата многоступенчатой сепарацией на промыслах и последующую переработку сырого газа и нестабильного конденсата на заводских установках. Переработка нестабильного конденсата включает:

удаление из конденсата метан-этановой фракции (сепарация при температуре 30oC);

обессоливание;

стабилизацию конденсата в целях подготовки его к транспорту или хранению и заключается в удалении сероводорода и фракции легких углеводородов до С4 (ШФЛУ);

деструктивная переработка конденсата, включающая предварительную глубокую гидроочистку, стабилизацию гидрогенизата и последующее фракционирование (ректификацию) с выделением фракций с началом кипения 62oC, 62 85oC, 85 180oC. Фракции 62 85oC и 85 - 180oC подвергают каталитическому облагораживанию на установках типа Л-35-II/1000 с последующей ректификацией и получением высокооктановых бензинов. Процесс риформинга ведут при температуре 450 530oC, давлении 1,5 3,0 МПа и объемных скоростях 1,2-1,5 ч-1 ("Технология переработки сероводородсодержащего газа и конденсата" под ред. Вакулина В.И. Оренбург, 1990, с. 103 129).

Недостатком прототипа является сложная технология переработки газоконденсата в моторные топлива, обусловленная промысловой подготовкой конденсата к транспорту на завод и сложная переработка его на заводе, включающая стадии стабилизации, фракционирования, гидроочистки полученных фракций, каталитического облагораживания и ректификации. Кроме того, как правило, выделяемое при стабилизации конденсата и его фракционирования легкие углеводороды не поступают на переработку, а теряются (сжигаются), что уменьшает выход целевых топливных фракций.

Задачей настоящего изобретения является создание способа переработки газоконденсата обеспечивающего возможность переработки его в районе добычи газоконденсата с получением моторных топлив, при одновременном упрощении технологии процесса, увеличении выхода высококачественных топливных фракций за счет вовлечения в процесс переработки дополнительного количества легких углеводородов и обеспечении регулирования выхода бензиновых, керосиновых и дизельных фракций.

Поставленная задача решается предлагаемым способом переработки газоконденсата, включающим отделение газа от жидкой фазы и переработку нестабильного конденсата в моторные топлива с использованием процессов каталитического облагораживания и ректификации, отличительная особенность которого состоит в том, что облагораживанию подвергают непосредственно нестабильный конденсат в присутствии цеолитсодержащего катализатора при температуре 250 430oC, давлении 0,1 1,5 МПа, после чего катализат подвергают ректификации с отбором целевых топливных фракций.

Предпочтительно процесс облагораживания следует вести с использованием цеолитсодержащего катализатора, имеющего следующий cостав, мас. цеолит Y с мольным отношением SiO2/Al2O3, равным от 4,0 до 8,0, 0,05 5,0, сверхвысококремнеземный цеолит с мольным отношением SiO2/Al2O3, равным от 20 до 100, 0,05 85,0, матрица - остальное.

Целесообразно каталитическое облагораживание вести при объемной скорости подачи сырья 0,5 3,5 м33способ переработки газоконденсата, патент № 2068870ч), а процесс ректификации в присутствии газообразных продуктов, образующихся в процессе каталитического облагораживания и/или газов ректификации.

Совокупность указанных признаков позволяет: существенно упростить технологию переработки газоконденсата и осуществлять ее непосредственно на промыслах; увеличить выход моторных топлив за счет привлечения в процесс переработки фракции легких углеводородов, растворенных в нестабильном конденсате и получать эти продукты с высокими потребительскими свойствами (см. данные таблицы 2); регулировать соотношения в выходах бензиновых, дизельных и керосиновых фракций, за счет регулирования температурных условий процесса и состава используемого катализатора.

На чертеже изображена принципиальная схема установки для получения моторных топлив по предлагаемой технологии.

Установка включает сепаратор 1 для отделения газа от конденсата, реактор облагораживания 2, ректификационные колонны 3.

Способ осуществляют следующим образом: газоконденсат из скважины поступает в сепаратор 1 (или систему сепараторов высокого и низкого давления), где происходит отделение сырого газа от конденсата. Сырой газ поступает на дальнейшую переработку, а полученный нестабильный конденсат с растворенными в нем легкими углеводородами поступает в реактор 2, где при температуре 250

430oC, давлении 0,1 1,5 МПа, объемной скорости подачи сырья 0,5 3,5 м3/(м3способ переработки газоконденсата, патент № 2068870ч) в присутствии цеолитсодержащего катализатора происходит процесс облагораживания.

В качестве цеолитсодержащего катализатора могут быть использованы любые известные катализаторы, содержащие цеолиты сверхвысококремнеземные типа пентасил или цеолиты типа Y, в состав которых введены различные неорганические связующие глина, алюмооксид, кремнезем, металлосиликаты и т.д. (см. например, А. с. N 1594768, B 01 J 29/08, 1983 г. А.с. N 1594767, B 01 J 29/08, 1983 г. А.с. N 1396334, B 01 J 29/12, 1982 г. А.с. N 1396333, B 01 J 29/12, 1984 г. пат. G B N 2034351, C 10 G 59/00, 1980; EP N 0032414, C 10 G 59/02, 1981; JP N 54-23362, C 10 G 37/10, 1979 г. и т.д.).

Наилучшие результаты были получены на катализаторе, представляющим собой смесь двух цеолитов цеолита типа Y с мольным отношением SiO2/Al2O3, равным 4,0oC8,0, в количестве 0,05 5,0% мас. и сверхвысококремнеземного цеолита, с мольным отношением SiO2/Al2O3, равным 20 100, в количестве 0,05 85,0, матрица остальное.

Цеолит Y и сверхвысококремнеземный цеолит, входящие в состав катализатора, могут быть использованы в ионообменной редкоземельной форме, и/или Н-форме, и/или Zn-формах. В качестве матрицы (связующего) могут быть использованы: бемит, псевдобемит, способ переработки газоконденсата, патент № 2068870-Al2O3, g-Al2O3, аморфные алюмосиликаты, цирконийсиликаты и т. д. В процессе облагораживания происходит образование в катализате изопарафиновых и ароматических углеводородов, которые способствуют более высоким октановым и цетановым числам моторных топлив. Образующийся катализат (жидкие продукты реакции) затем поступают в ректификационную колонну 3, где происходит выделение следующих углеводородных фракций: бензиновые н.к. 120oC, 120 140oC или 120 160oC, или 120 180oC или 120 - 200oC, или н. к. 200oC и керосино-дизельная фракция 200 - 350oC. Процесс ректификации целесообразно вести в присутствии газообразных продуктов, образующихся в процессе каталитического облагораживания и/или газов ректификации, которые выполняют роль инертных газов. Затем в зависимости от сезонной потребности в топливах получают летние и зимние сорта автомобильных и дизельных топлив путем смешения бензиновых и дизельных фракций в определенных соотношениях.

Характеристика использованных нестабильных конденсатов, получаемых в результате отделения из газокондесата сырого газа, представлена в таблице 1.

Ниже приведены примеры, иллюстрирующие способ, но не огранивающие его.

Катализаторы по примерам 2 17 готовят следующими способами:

Цеолит Y и сверхвысококремнеземный цеолит в ионообменных H-и/или редкоземельной, и/или Zn-формах смешивают с матрицей и затем формуют в виде экструдатов, таблеток, шариков, сушат и прокаливают (примеры 2, 4 7, 9 12, 17).

Цеолит Y и сверхвысококремнеземный цеолит в Na-формах смешивают с матрицей, формуют в виде экструдатов, таблеток, шариков и затем проводят ионный обмен катионов Na+ на редкоземельные и/или катионы Zn+2 и/или Н+, промывают водой, сушат и прокаливают (примеры 3, 8, 13 16).

Пример 1. Водный раствор сульфата алюминия концентрации 20 кг/м3 по Al2O3 и содержащий 80 кг/м3 H2SO4, водный раствор силиката натрия концентрации 130 кг/м3 по SiO2 и содержащий 65 кг/м3 NaOH, водную суспензию цеолита NaY и сверхвысококремнеземного цеолита концентрации соответственно 1,4 и 140,0 кг/м3 смешивают при температуре 15oC c образованием гидрогеля с рН= 8,5. Затем гидрогель подвергают обработке водным раствором сульфата аммония концентрации 10 кг/м3 при температуры 50oC в течение 24 часов, промывают дистиллированной водой при 50oC в течение 24 часов, сушат при 170oC и прокаливают при 550oC в среде воздуха в течение 12 часов. Получают катализатор следующего состава: цеолит Y в Н форме с мольным отношением SiO2/Al2O3, равным 8,0 0,05% цеолит сверхвысококремнеземный в Н форме с мольным отношением SiO2/Al2O3, равным 100 5% остальное матрица аморфный алюмосиликат.

Пример 2. Каталитическое облагораживание нестабильного конденсата осуществляется при 250oC, и объемной скорости подачи сырья 0,75 м3/(м3способ переработки газоконденсата, патент № 2068870ч) и давлении 1,5 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в редкоземельной форме с мольным отношением SiO2/Al2O3, равным 5,2 5,0% цеолит сверхвысококремнеземный в Н-форме с мольным отношением равным 40 25% остальное матрица псевдобемит.

Пример 3. Каталитическое облагораживание нестабильного конденсата осуществляется при 430oC, объемной скорости подачи сырья 3,5 м3/(м3способ переработки газоконденсата, патент № 2068870ч) и давлении 0,1 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в Н-форме с мольным отношением SiO2/Al2O3 равным 8,0, 0,05% цеолит сверхвысококремнеземный в Н-форме с мольным отношением SiO2/Al2O3, равным 100, 5% остальное матрица аморфный алюмосиликат.

Пример 4. Каталитическое облагораживание нестабильного конденсата осуществляют при 275oC, объемной скорости подачи сырья 2,5 м3/(м3способ переработки газоконденсата, патент № 2068870ч) и давлении 0,5 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в редкоземельной форме с мольным отношением SiO2/Al2O3, равным 4,0, 2,0% цеолит сверхвысококремнеземный в Zn-форме с мольным отношением SiO2/Al2O3, равным 20, 50% остальное матрица - g-Al2O3.

Пример 5. Каталитическое облагораживание нестабильного конденсата осуществляют при 350oC, объемной скорости подачи сырья 1,5 м3/(м3способ переработки газоконденсата, патент № 2068870ч) и давлении 0,2 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в Zn-форме с мольным отношением SiO2/Al2O3; равным 4,8, 1,0% cверхвысококремнеземный цеолит в Н-форме с мольным отношением SiO2O3, равным 60, 0,5% остальное матрица аморфный цирконийсиликат.

Пример 6. Каталитическое облагораживание нестабильного конденсата осуществляют при 400oC, объемной скорости подачи сырья 2,0 м3/(м3способ переработки газоконденсата, патент № 2068870ч) и давлении 0,1 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в Н-форме с мольным отношением SiO2/Al2O3, равным 5,1, 1,5% цеолит сверхвысококремнеземный в редкоземельной форме с мольным отношением SiO2/Al2O3, равным 60, 30% остальное матрица - a-Al2O3.

Пример 7. Каталитическое облагораживание нестабильного конденсата осуществляют при 300oC, объемной скорости подачи сырья 1,0 м33способ переработки газоконденсата, патент № 2068870ч) и давлении 1,0 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в редкоземельной форме с мольным отношением SiO2/Al2O3, равным 7,2, 5,0% цеолит сверхвысококремнеземный в Zn-форме с мольным отношением SiO2/Al2O3, равным 100, 0,05% остальное матрица - аморфный магнийсиликат.

Пример 8. Каталитическое облагораживание газового конденсата осуществляют при 375oC, объемной скорости подачи сырья 1,5 м3/(м3способ переработки газоконденсата, патент № 2068870ч) и давлении 0,1 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в Н-форме с мольным отношением SiO2/Al2O3, равным 4,8, 1,0% цеолит сверхвысококремнеземный в Н-форме с мольным отношением SiO2/Al2O3, равным 45, 85% остальное матрица бемит.

Пример 9. Каталитическое облагораживание нестабильного конденсата осуществляют при 250oC, объемной скорости подачи сырья 1,0 м3/(м3способ переработки газоконденсата, патент № 2068870ч) и давлении 0,1 МПа при использовании катализатора, имеющего состав, мас. цеолит в H-и редкоземельной формах с мольным отношением SiO2/Al2O3, равным 5,1, 3,5% цеолит сверхвысококремнеземный в Н-форме с мольным отношением SiO2O3, равным 65, 20% остальное матрица g-Al2O3.

Пример 10. Катализатор как в примере 9. Каталитическое облагораживание нестабильного конденсата осуществляют при 350oC, объемной cкорости подачи сырья 1,0 м3/(м3способ переработки газоконденсата, патент № 2068870ч) и давлении 0,1 МПа.

Пример 11. Катализатор как в примере 9. Каталитическое облагораживание нестабильного конденсата осуществляют при 430oC, объемной скорости подачи сырья 1,0 м3/(м3способ переработки газоконденсата, патент № 2068870ч) и давлении 0,1 МПа.

Пример 12. Катализатор как в примере 9. Каталитическое облагораживание нестабильного конденсата осуществляюся при 375oC, объемной скорости 1,5 м3/(м3способ переработки газоконденсата, патент № 2068870ч) и давлении 0,5 МПа.

Пример 13. Каталитическое облагораживание нестабильного конденсата осуществляют при 400oC, объемной скорости подачи сырья 1,5 м3/(м3способ переработки газоконденсата, патент № 2068870ч) и давлении 0,25 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в Н- и редкоземельной формах с мольным отношением SiO2/Al2O3, равным 70, 1,5% остальное матрица аморфный цирконийсиликат.

Пример 14. Катализатор как в примере 13. Каталитическое облагораживание нестабильного конденсата осуществляют при 400oC, объемной скорости подачи сырья 1,0 м3/(м3способ переработки газоконденсата, патент № 2068870ч) и давлении 0,1 МПа.

Пример 15. Катализатор как в примере 13. Каталитическое облагораживание нестабильного конденсата осуществляют при 375oC, объемной скорости подачи сырья 1,0 м3/(м3способ переработки газоконденсата, патент № 2068870ч) и давлении 1,5 МПа.

Пример 16. Каталитическое облагораживание нестабильного конденсата осуществляют при 430oC, объемной скорости подачи сырья 1,0 м3/(м3способ переработки газоконденсата, патент № 2068870ч) и давлении 0,15 МПа при использовании катализатора, имеющего состав, мас. цеолит Y в Н- и редкоземельной формах с мольным отношением SiO2/Al2O3, равным 5,1, 25% остальное матрица аморфный цирконийсиликат.

Пример 17. Каталитическое облагораживание нестабильного конденсата осуществляют при 375oC, объемной скорости подачи сырья 1,5 м3/(м3способ переработки газоконденсата, патент № 2068870ч) и давлении 0,2 МПа при использовании катализатора, имеющего состав, мас. цеолит сверхвысококремнеземный в Н- и редкоземельной формах с мольным отношением SiO2/Al2O3, равным 70, 5,0% остальное матрица аморфный магнийсиликат.

Полученные пробы катализата в процессе облагораживая нестабильного конденсата (примеры 2 17) подвергают ректификации в присутствии газообразных продуктов, образовавшихся при облагораживании нестабильного конденсата и/или при ректификации. Температура катализата при входе в ректификационную колонку составляет 270 320oC и давлении 0,12 0,20 МПа.

Результаты опытов представлены в таблице 2.

Таким образом преимуществом предлагаемого способа является:

возможность осуществлять переработку продукции скважин в районе промысла, что даст возможность сэкономить затраты на подготовку скважинной продукции к транспортировке, транспортировку и доставку моторных топлив на месторождение углеводородного сырья;

упрощение схемы переработки за счет исключения ряда технологических операций (соответственно аппаратов);

повышение выхода моторных топлив за счет вовлечения в процесс переработки легких углеводородов;

получение высокооктановых бензинов с октановым числом до 85 98 и дизельных топлив с пентановым числом 45 54 с выходом до 93,7% мас.

возможность регулировать выход бензиновых и дизельных фракций в зависимости от потребности в том или ином виде топлива.

Класс C10G35/095 содержащими кристаллические алюмосиликаты, например молекулярные сита

катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
способ получения высокооктанового базового бензина -  патент 2518481 (10.06.2014)
цеолитсодержащий катализатор, способ его получения и способ переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола -  патент 2498853 (20.11.2013)
цеолитсодержащий катализатор, способ его получения и способ превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола -  патент 2493910 (27.09.2013)
цеолитсодержащий катализатор, способ его получения и способ превращения низкооктановых бензиновых фракций в высокооктановый бензин без и в присутствии водорода -  патент 2480282 (27.04.2013)
цеолитсодержащий катализатор, способ его получения и способ превращения алифатических углеводородов c2-c12 и метанола в высокооктановый бензин и ароматические углеводороды -  патент 2478007 (27.03.2013)
гетерогенные катализаторы для получения ароматических углеводородов ряда бензола из метанола и способ переработки метанола -  патент 2477656 (20.03.2013)
способ улучшения катализатора ароматизации -  патент 2476412 (27.02.2013)
способ каталитического риформинга бензиновых фракций -  патент 2471855 (10.01.2013)
катализатор для риформинга бензиновых фракций и способ его приготовления -  патент 2471854 (10.01.2013)
Наверх