устройство для измерения коэффициента поглощения

Классы МПК:G01K17/00 Измерение количества тепла
Автор(ы):, ,
Патентообладатель(и):Обособленное научно-исследовательское подразделение по солнечной и точной оптике при Государственном предприятии "НПО Астрофизика"
Приоритеты:
подача заявки:
1981-12-07
публикация патента:

Использование: область квантовой электроники.

Сущность изобретения: в устройство для измерения коэффициента поглощения введен измеритель мощности диффузно рассеянного излучения, выполненный в виде двух полых усеченных металлических конусов, вершины которых обращены друг к другу и соединены полой металлической трубой, причем металлическая труба заключена в обечайку для протока хладагента. 1 ил.
Рисунок 1

Формула изобретения

Устройство для измерения коэффициента поглощения по а.с. N 143323, отличающееся тем, что, с целью повышения точности измерений и расширения функциональных возможностей устройства, в него дополнительно введен измеритель мощности диффузно рассеянного излучения, установленный перед зеркалом измерителя мощности поглощенного излучения, выполненный в виде двух полых усеченных металлических конусов, вершины которых обращены друг к другу и соединены полой металлической трубой, при этом на внутренней боковой поверхности каждого конуса размещен электрический нагреватель и нанесено покрытие, поглощающее излучение, а на наружной боковой поверхности размещены термодатчики и нанесен слой теплоизоляции, причем металлическая труба заключена в обечайку для протока хладагента.

Описание изобретения к патенту

Предлагаемое изобретение относится к области квантовой электроники, в частности к устройствам для измерения коэффициента поглощения и шероховатости лазерных зеркал на рабочей длине волны, и является усовершенствованием известного устройства, описанного в а.с. СССР N 143323, кл. G01K 17/00.

В основном изобретении по а.с. N 143323, кл. G01K 17/00 описано устройство для измерения коэффициента поглощения лазерных зеркал. Устройство содержит измерители мощности поглощенного и отраженного излучений и термостабилизированную систему охлаждения измерителей мощности. Каждый из измерителей мощности при этом выполнен равноплечно относительно термостабилизированной системы охлаждения.

Основным недостатком известного устройства является низкая точность определения коэффициента поглощения, вызванная отсутствием информации о рассеянном излучении. Отсутствие измерений рассеянного излучения не позволяет правильно определить полную мощность падающего на зеркало излучения и вносит существенную погрешность (до нескольких процентов для достаточно шероховатых поверхностей) в измерения коэффициента поглощения. Кроме того, измерение диффузно рассеянного излучения позволяет определить также шероховатость поверхности зеркала.

Целью предлагаемого дополнительного изобретения является повышение точности измерения коэффициента поглощения и расширение функциональных возможностей устройства.

Указанная цель достигается тем, что в устройство по а.с. N143323 дополнительно введен измеритель мощности рассеянного излучения, установленный перед зеркалом измерителя мощности поглощенного излучения, выполненный в виде двух полых усеченных металлических конусов, вершины которых обращены друг к другу и соединены полой металлической трубой, при этом на внутренней боковой поверхности каждого конуса размещен электрический нагреватель и нанесено покрытие, поглощающее излучение, а на наружной боковой поверхности размещены термодатчики и нанесен слой теплоизоляции, причем металлическая труба заключена в обечайку для протока хладагента.

На фиг. 1 схематически изображено предложенное устройство, включающее:

1 лазер;

2 измеритель мощности поглощенного излучения;

3 измеритель мощности отраженного излучения;

4 систему охлаждения с термостабилизацией температуры хладагента;

5 измеритель мощности диффузно рассеянного излучения;

6, 6" металлические корпуса;

7 металлическую трубу;

8 обечайку для протока хладагента;

9 электрические нагреватели;

10, 10" термодатчики;

11 тепловую изоляцию.

Между лазером 1 и измерителем мощности поглощенного излучения 2 установлен измеритель мощности диффузно рассеянного излучения 5. Он представляет собой два одинаковых полых усеченных тонкостенных металлических конуса 6 и 6"с вершинами, обращенными друг к другу, соединенные тонкостенной металлической трубой 7, внутри которой проходит излучение. К внутренним поверхностям каждого конуса прикреплены (например, приклеены) одинаковые электрические нагреватели 9, покрытые со стороны излучения поглощающим излучение составом, а на наружных поверхностях размещены термодатчики 10 и 10" (например, термометры сопротивлений). Металлическая труба 7 помещена в камеру 8, через которую прокачивается термостатирующий хладагент B. Снаружи оба конуса покрыты слоем теплоизоляции 11. Измерители 2, 3, 5 располагаются таким образом, чтобы падающее на зеркало измерителя 2 и отраженное им излучение проходили через трубу 7, а все диффузно рассеянное отражающее поверхностью зеркала излучение попадало на внутреннюю поглощающую поверхность конуса 6" измерителя 5.

Устройство работает следующим образом.

Излучение лазера 1 рабочей длины волны направляется на зеркало измерителя мощности поглощенного излучения 2 и затем отражается на измеритель мощности отраженного излучения 3 (оба измерителя описаны в а.с. N143323). Тепло, выделяющееся при поглощении поверхностью конуса 6" диффузно рассеянного излучения, отводится от соединенной с конусами 6 и 6" трубы 7 термостатирующей жидкостью B, а возникающее при этом температурное поле регистрируется термодатчиками 10". При помощи регулируемого электрического нагревателя 9 конуса 6 подбирается электрическая мощность, обеспечивающая одинаковые температурные поля конусов 6 и 6", равная поглощенной конусом 6" мощности. Температурное поле конуса 6 регистрируется термодатчиками 10. Тепловая изоляция 11 снижает теплопотери в окружающую среду, уменьшая ее влияние на точность измерений.

Использование предлагаемого изобретения позволяет более точно по сравнению с прототипом определять полную мощность падающего на зеркало излучения и, следовательно, уменьшить погрешность определения коэффициента поглощения. Кроме того, можно показать, что дополнительно, в отличие от прототипа, по измеренным значениям мощности поглощенного Nп, отраженного Nотр и диффузно рассеянного излучения Nд определяется величина среднеквадратичной шероховатости поверхности h:

устройство для измерения коэффициента поглощения, патент № 2093803

где устройство для измерения коэффициента поглощения, патент № 2093803 длина волны излучения;

j угол падения излучения на поверхность.

По материалам заявки на предприятии изготовлена экспериментальная установка и проведена отладка ее элементов. Установка обеспечивает более высокую по сравнению с прототипом точность измерения коэффициента поглощения (на 1 2%), а также измерение шероховатости поверхности.

Класс G01K17/00 Измерение количества тепла

калориметр переменной температуры (варианты) -  патент 2529664 (27.09.2014)
способ измерения холодопроизводительности охлаждающего устройства-кондиционера -  патент 2529438 (27.09.2014)
способ определения теплоты адсорбции и теплоты смачивания поверхности и измерительная ячейка калориметра -  патент 2524414 (27.07.2014)
способ измерения тепловых эффектов дифференциальным модуляционным сканирующим калориметром и калориметр для его осуществления -  патент 2523760 (20.07.2014)
дифференциальный массивный тонкопленочный калориметр -  патент 2521208 (27.06.2014)
фотоприемное устройство для измерения энергетических параметров вакуумного ультрафиолетового излучения -  патент 2519519 (10.06.2014)
способ интеллектуального энергосбережения на основе инструментального многопараметрового мониторингового энергетического аудита и устройство для его осуществления -  патент 2516203 (20.05.2014)
способ измерения импульса тепла -  патент 2504744 (20.01.2014)
термостатно-тахометрический теплосчетчик -  патент 2502959 (27.12.2013)
способ измерения теплового потока -  патент 2488080 (20.07.2013)
Наверх