способ предотвращения образования крупных градин в облаках

Классы МПК:A01G15/00 Способы и устройства для изменения атмосферных условий
Автор(ы):,
Патентообладатель(и):Высокогорный геофизический институт Росгидромета
Приоритеты:
подача заявки:
1997-05-06
публикация патента:

Способ может быть использован для предотвращения градобитий, приносящих вред сельскому хозяйству. В облака вносят раствор соли тетра-алкиламмония в экологически чистом фреоне. Введение реагента в заданной концентрации на границе раздела восходящих и нисходящих потоков воздуха в область между изотермами (-2) - (-6)oC является оптимальным с точки зрения ускорения действия реагента по созданию искусственных канальных зародышей града, конкурирующих в росте с капельками, растущими естественно в облаках. 2 ил.
Рисунок 1, Рисунок 2

Формула изобретения

Способ предотвращения образования крупных градин в облаках, включающий введение в область восходящих потоков воздуха льдообразующего реагента, отличающийся тем, что раствор соли тетра-алкиламмония в экологически чистом фреоне вводят в облако на границу раздела восходящих и нисходящих потоков воздуха в область между изотермами (-2) oC (-6)oC при помощи рассредоточнных линейных источников в концентрации не менее 1 источника на 1 км3 облачного воздуха.

Описание изобретения к патенту

Изобретение относится к метеорологии, в частности к активным воздействиям на облака и может быть использовано для предотвращения градобитий, приносящих вред сельскому хозяйству.

Из известных способов воздействия на градовые процессы внедрение на производственном уровне получили так называемые "метод конкуренции" [2] и "метод ускоренного осадкообразования" [1], в которых в качестве льдообразующего реагента используется йодистое серебро, которое вводится в разные места градового облака. Начиная с 1986 года, на территории бывшего СССР противоградовые работы проводятся по методу [1], который будет рассматриваться в качестве прототипа.

Основные положения этого метода заключаются в следующем:

1. Ускорение осадкообразования может достигаться за счет внесения льдообразующих реагентов и создания в обновляющейся переохлажденной части градовых облаков столь большой концентрации кристаллов, которая обеспечит их быструю агрегацию, обзернение и превращение в крупу миллиметровых размеров. Восходящие потоки нарастают более медленно и не могут поддержать эту крупу. Она выпадает, не вступая в процесс градообразования, и обеспечивает, помимо резкого сокращения водности в зоне "формирования", динамические эффекты подавления восходящего потока [1].

2. На одноячейковые процессы рекомендуется проводить воздействие на стадии появления первого радиоэхо и в ближайшие 2 - 4 мин после его зарождения по всей площади зарождения; на суперячейковые процессы - на фронтальную обновляющуюся часть навеса радиоэхо (с учетом его пространственной ориентации) и ближайшее к ней лидерное облако. При многоячейковых (упорядоченных и неупорядоченных), а также процессах переходного типа прерывание выпадения града осуществляется также путем воздействия на фронтальную часть навеса радиоэхо и ближайшее лидерное облако, однако одновременно с этим проводится воздействие на первое радиоэхо новых ячеек [1].

Возможность практической реализуемости концепции "ускорения осадкообразования" при активных воздействиях (п.1) среди специалистов не находит однозначного подтверждения. А эффективность противоградовых работ с использованием метода [1], как показали результаты анализа физических характеристик града с воздействием и без в работе [3], является практически незначимой, что и обуславливает необходимость дальнейшего совершенствования метода предотвращения градобитий.

Результаты лабораторных и численных экспериментов, наземных измерений града [4] показывают, что многие положения [1] умозрительны, научно не обоснованы и не реализуются на практике.

Так, у прототипа [1], у [2] и других известных способов воздействия на град является общим недостатком введение кристаллизующего реагента (йодистое серебро) в облако на изотермы (-10) - (-12)oC в надежде на достаточно быстрое появление на этих уровнях ледяных кристаллов в требуемых больших концентрациях. Однако в реальных условиях для появления на частицах льдообразующего реагента ледяных кристаллов требуется наиболее вероятная задержка от 3 до 5 мин. А последние работы в этом направлении (Труды 2-ой Международной конференции по физике облаков в Италии, август, 1996) указывают на временные задержки в появлении ледяных кристаллов в реальных облаках при воздействии, достигающие 8 минут. Иначе говоря, если допустить, что время наиболее вероятной задержки - 5 мин и скорость восходящих потоков воздуха в градовом облаке, даже минимальная, достигает 10 м/с, а градиент температуры по высоте 6,6 - 7oC/км, то через 5 мин после внесения кристаллизующий реагент, как пассивная примесь, может вынестись на изотерму -29,8oC. Если же учесть, что уровень естественной кристаллизации в градовых облаках расположен на изотермах (-27) - (-28)oC, то воздействие при помощи йодистого серебра на фазовую неустойчивость градового облака способами [1], [2] и др. совершенно теряет смысл в силу своей неоперативности.

Кроме того, реализация способа [1] связана с необходимостью создания частиц искусственной крупы в градовом облаке, которая собственно и должна осуществлять преждевременное осадкообразование.

Однако оценки скорости роста крупы в облаке и длительность ее формирования показывают, что эта длительность соизмерима со временем жизни градового облака и достигает нескольких десятков минут, что превращает [1] в неоперативный и, следовательно, неэффективный способ воздействия, если к перечисленному добавить, что зоны образования и роста наиболее крупного града остаются при этом не подвержены воздействию вообще.

Таким образом, прототип обладает следующими недостатками:

- способ воздействия не увязан с механизмом образования крупных градин, с зонами их образования;

- способ воздействия недостаточно обоснован с научной точки зрения, основан на умозрительных заключениях, не доказана возможность практической реализации;

- нет учета времени проявления льдообразующих свойств кристаллизирующего реагента, его взаимодействия с облачными элементами;

- инструментальные измерения града из процессов с воздействием и без показали невысокую эффективность способа.

Предложенный способ разработан на основе последних достижений лабораторных и численных экспериментов, специальных наземных измерений физических характеристик града из процессов с активным воздействием и без, на основе новых представлений о механизме образования града [4]. По результатам сравнительного анализа он научно обоснован и значительно эффективнее прототипа.

Способ основан на использовании нетрадиционного экологически чистого реагента - раствора соли тетра-алкиламмония в экологически чистом фреоне, распыляемого под давлением в облачной среде [5], существующих технических средств его доставки (с борта самолета), а также методов и технических средств индикации града в облаке.

Ожидаемый от использования предложенного способа технический результат заключается в предотвращении образования крупных градин в облаке, способных нанести ущерб растениям, животным, строениям.

Такой результат достигается выбором оптимального по сравнению с другими методами места внесения частиц льдообразующего реагента и использования реагента с более высоким быстродействием и более высоким порогом льдообразования.

Отличительные признаки предложенного метода заключается в следующем:

а). Область внесения льдообразующего реагента располагается между изотермами (-2) - (-6)oC непосредственно под зоной образования капельных зародышей градин, а не во фронтальной части облака по прототипу. Внесение быстродействующего, с порогом льдообразования 1,5oC и временем срабатывания не более 20 с, реагента с выходом способ предотвращения образования крупных градин в облаках, патент № 21197411012 ледяных частиц с 1 г вещества на эти температурные уровни позволяет доставлять готовые ледяные кристаллы на уровни температур (-5) - (-10)oC, образующих наиболее вероятную область образования и роста крупного града, которая является наиболее благоприятным местом для вмешательства в процесс естественного образования и роста града, чего не позволяет прототип.

б). Реагент вносится на границе раздела восходящих и нисходящих потоков в градовом облаке, где образуются крупные капли и капельные зародыши града. Эта зона в градовом облаке характеризуется повышенной турбулентностью воздушных потоков, способствующей диффузии и распространению частиц кристаллизующего реагента и полному охвату засевом всего требуемого объема.

в). Геометрия зоны внесения частиц льдообразующего реагента и ее ориентация в пространстве по сравнению с прототипом обеспечивает более эффективное взаимодействие реагента с облачными элементами. Зона соответствует месту образования крупных капель, капельных зародышей и наиболее крупного града. В прототипе эта зона остается неподверженной воздействию.

г). По сравнению с прототипом предлагаемый способ является гораздо более оперативным по двум причинам: во-первых, время проявления льдообразующих свойств реагента в способе не более 20 с, в прототипе - до 8 мин; во-вторых, создание искусственных капельных зародышей града в способе происходит за время не более 15 - 20 с, а создание искусственной крупы - зародышей града в прототипе происходит за несколько десятков минут, что соизмеримо со временем жизни градового облака. Преимущество способа перед прототипом является принципиальным и позволяет вмешиваться в быстротечные процессы градообразования.

д). По сравнению с прототипом и др. способами реагент вносится при помощи механически рассредоточенных линейных источников, опускающихся в облако и обеспечивающих оперативный объемный засев, в прототипе распространение частиц реагента из дымовых шлейфов ракет за счет облачной турбулентности не обеспечивается и реагент как пассивная примесь выпадает на землю в осадках пятнами, не участвуя в образовании града.

Способ осуществляется следующим образом.

I. Симметричные градовые облака.

Обрабатывается все сечение центральной области восходящих потоков облачного воздуха, расположенное между изотермами (-2) - (-6)oC и содержащее облачные элементы, диаметр которых достигает более 100 мкм. На фиг. 1 изображена область внесения частиц реагента (соли тетра-алкиламмония в фреоне) с учетом особенностей температурного поля в облаке (температура в облаке на том же уровне всегда выше температуры окружающего воздуха).

Для сравнения на этом же чертеже представлена область внесения льдообразующего реагента (йодистое серебро) по прототипу.

Воздействие необходимо начинать с облачной изотермы -6oC. Снижать постепенно до уровня -2oC. Реагент необходимо вносить при помощи механически рассредоточенных линейных источников, с концентрацией не менее 1 источника на 1 км3, создающие не менее 104 кристаллов на 1 м3 облачного воздуха.

II. Несимметричные градовые облака.

В случае несимметричных градовых облаков обрабатывается область, расположенная между изотермами (-2) - (-6)oC, находящаяся на границе раздела восходящих и нисходящих воздушных потоков в областях, где образуются крупные капли и капельные зародыши града. Из области внесения реагента доставляются готовые ледяные кристаллы в зону наиболее вероятного образования и роста крупного града, расположенную между изотермами (-5) - (-10)oC, для кристаллизации крупных капель и уменьшения скорости роста града за счет крупнокапельной фракции и создания капельных зародышей града.

На фиг. 2 изображена область внесения реагента в несимметричное облако. На этом же чертеже изображена зона, в которую вносят реагент по схеме прототипа.

Рассредоточенные линейные источники частиц льдообразующего аэрозоля вводятся в концентрации не менее одного источника на 1 км3 облачного воздуха и их число увеличивается с ростом интенсивности градового процесса.

Анализ новых представлений о механизме образования града показал, что наиболее крупные градины выпадают с правой стороны градовой дорожки и преимущественно на капельных зародышах града. Наиболее крупные градины имеют наиболее короткую траекторию падения, обладают наибольшей кинетической энергией и образуются на границе раздела восходящих и нисходящих потоков в градовом облаке.

Сравнительный анализ предложенного способа и прототипа позволяет сделать вывод о том, что в прототипе и используемый реагент, и схема внесения не позволяют вмешаться в процесс формирования крупного града. Только предложенный способ может эффективно воздействовать на процесс формирования крупного града с большой кинетической энергией, приносящего ущерб народному хозяйству.

Литература

1. Абшаев М.Т. О новом методе воздействия на градовые процессы. - Труды ВГИ, вып. 72, 1989, с.14-28 (прототип).

2. Бибилашвили Н. Ш., Бурцев И.И., Серегин Н.А. Руководство по организации и проведению противоградовых работ. -Л.: Гидрометеоиздат, 1981, с.168.

3. Тлисов М.И., Кагермазов А.Х. Статистический анализ данных специальной градомерной сети при проведении активных воздействий и в их отсутствие, основанный на рангах / в кн. "Обозрение прикладной и промышленной математики" -М.: Научное издательство "ТВП", 1995, т. 2, вып. 2, с.187-194.

4. Tlisov M.I., Khuchunaev B.M. "Physical characteristics of Hail from naturally developed and seeded cloud processes. Recommendations on modification of present hail supression Methods" / 12-th International Conferense on Clouds and Precipitation Zurich, Switzerland, 19-22 August 1996, Proceedings - vol. 1, p-p 1275-1276.

5. Федченко Л.М., Тлисов М.И., Степанов Г.В., Маширов Ю.Т. Способ воздействия на облака и туманы. Положит. решение по заявке 6 ADIC 15/00 RU N 94006664/13 (006335) от 11.09.1996 г.

Класс A01G15/00 Способы и устройства для изменения атмосферных условий

система регулирования микроклимата поля -  патент 2529725 (27.09.2014)
дождевальная установка -  патент 2528724 (20.09.2014)
устройство для рассеивания тумана -  патент 2525333 (10.08.2014)
способ принудительного разгона атмосферных облаков путем конденсации парообразной влаги их верхнего слоя -  патент 2524544 (27.07.2014)
устройство для рассеивания тумана -  патент 2523838 (27.07.2014)
способ изменения атмосферных условий над заданной территорией -  патент 2518223 (10.06.2014)
устройство для рассеивания тумана -  патент 2516988 (27.05.2014)
устройство коррекции погодных условий -  патент 2516223 (20.05.2014)
способ преобразования термического циклона во фронтальный и устройство для его реализации -  патент 2514409 (27.04.2014)
способ охлаждения тропосферы -  патент 2511252 (10.04.2014)
Наверх