носитель серебросодержащего катализатора получения оксида этилена и способ его получения

Классы МПК:B01J21/12 диоксид кремния и оксид алюминия
B01J32/00 Носители катализаторов вообще
B01J37/04 смешивание
C07D301/10 в присутствии катализаторов, содержащих серебро или золото
Автор(ы):, ,
Патентообладатель(и):Сотников Валерий Васильевич,
Борисова Татьяна Владимировна,
Батищева Нина Петровна
Приоритеты:
подача заявки:
1999-02-22
публикация патента:

Изобретение относится к технологии приготовления носителя катализаторов, содержащих серебро для получения оксида этилена. Предложен новый состав носителя серебросодержащего катализатора получения оксида этилена, включающий альфа-оксид алюминия, кальций, магний и кремний. Носитель дополнительно содержит натрий и каркасные алюмосиликаты-плагиоклазы, причем натрий, кальций, магний и кремний содержатся в носителе в виде одного соединения - аморфного силиката этих металлов и носитель имеет следующий состав, мас.%: соединение из аморфного силиката натрия, кальция, магния 9,5-18,5; алюмосиликаты-плагиоклазы 5,5-13,0; альфа-оксид алюминия остальное. Предложен также способ получения этого носителя. Предлагаемый носитель и способ его получения по сравнению с известными позволяет получить высокопрочный, с оптимальными текстурными характеристиками носитель для серебросодержащего катализатора. 2 с. и 7 з.п.ф-лы, 5 табл.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

1. Носитель серебросодержащего катализатора получения оксида этилена, включающий альфа-оксид алюминия, кальций, магний и кремний, отличающийся тем, что носитель дополнительно содержит натрий и каркасные алюмосиликаты-плагиоклазы, причем натрий, кальций, магний и кремний содержатся в носителе в виде одного соединения - аморфного силиката этих металлов и носитель имеет следующий состав, мас.%:

Соединение из аморфного силиката натрия, кальция, магния - 9,5 - 18,5

Алюмосиликаты-плагиоклазы - 5,5 - 13,0

Альфа-оксид алюминия - Остальное

2. Носитель но п.1, отличающийся тем, что в качестве алюмосиликатов-плагиоклазов носитель содержит преимущественно анортит CaAl2Si2O8 триклинной структуры и имеет следующий состав, в пересчете на оксиды металлов, мас.%:

Диоксид кремния - 46,0 - 47,0

Оксид алюминия - 34,0 - 35,0

Оксид кальция - 16,0 - 17,0

Оксид натрия - 1,4 - 1,5

3. Носитель по п.1, отличающийся тем, что соединение аморфного силиката натрия, кальция, магния в носителе имеет следующий состав, в пересчете на оксиды металлов, мас.%:

Диоксид кремния - 73 - 74

Оксид натрия - 17 - 20

Оксид кальция - 2,0 - 3,5

Оксид магния - 4,6 - 6,5

4. Носитель по п.1, отличающийся тем, что он имеет удельную поверхность 0,3 - 0,7 м2/г, объем пор 0,25 - 0,6 см3/г.

5. Способ получения носителя серебросодержащего катализатора получения оксида этилена, включающий смешение альфа-оксида алюминия с соединение кальция, магния, кремния с водой, связующим веществом - выгорающей добавкой, формование, прокаливание, отличающийся тем, что смешению подвергают соединение, состоящее из аморфного силиката натрия, кальция, магния в виде порошка, гидроксид алюминия, способный к образованию связующего вещества в присутствии пластификатора и содержащий не более 60% рентгеноаморфного гидроксида алюминия, выгорающую добавку, компоненты берут в таких количествах, чтобы готовый носитель содержал, мас.%:

Аморфный силикат кальция, натрия, магния - 9,5 - 18,5

Алюмосиликаты-плагиоклазы - 5,5 - 13,0

Альфа-оксид алюминия - Остальное

причем прокаливание проводят при 1230 - 1270oС до получения такого состава носителя с удельной поверхностью 0,3 - 0,7 м2/г и объемом пор 0,25 - 0,6 см3/г.

6. Способ по п.4, отличающийся тем, что в качестве пептизатора используют одноосновные кислоты, предпочтительно азотную.

7. Способ по п.4, отличающийся тем, что в качестве выгорающей добавки используют древесную муку с размером частиц менее 180 мкм, предпочтительно менее 63 мкм.

8. Способ по п.4, отличающийся тем, что гидроксид алюминия имеет размер частиц преимущественно менее 15 мкм.

9. Способ по п. 4, отличающийся тем, что соединение в виде порошкообразного аморфного силиката натрия, кальция, магния имеет размер частиц менее 160 мкм, предпочтительно менее 63 мкм.

Описание изобретения к патенту

Изобретение относится к технологии приготовления носителя катализаторов, содержащих серебро для получения оксида этилена. Условия работы катализатора характеризуются высокими температурными, механическими нагрузками, интенсивным воздействием газового потока. Поэтому долговечность катализатора определяется способностью сохранять свою прочность и высокую каталитическую активность при длительной эксплуатации. Все это непосредственно зависит от качества носителя, его физико- химических свойств и химического состава. В качестве носителей катализаторов получения оксида этилена чаще всего используют альфа-оксид алюминия в чистом виде или с добавками. Причем предпочтение отдается тем, которые имеют удельную поверхность, измеренную методом BET от 0,01 до 10 м2/г и объем пор, измеренный общепринятым методом по адсорбции воды 0,1-0,75 см3/г (Патент России N 1831369, МКП5 B 01 J 23/64, C 07 D 301/10, 1993)

Главным недостатком этих носителей является необходимость термообработки их при температурах выше 1350oC, предпочтительно 1500oC.

Так, известен способ приготовления носителя (Европейская заявка N 0150238, МПК B 01 J 23/02, C 07 D 301/10, 1985) на основе альфа-оксида алюминия, содержащий алюминат бария или силикат бария в количестве 0,1-1,0% в пересчете на барий. Носитель готовят формовкой сферических гранул из пасты, состоящей из 98,0-99,8% тонкодисперсного чистого от примесей порошка альфа-оксида алюминия, 0,16-1,9% порошка алюмината или силиката бария, 2,0-20% порообразующего материала и воды с последующим прокаливанием при 1200-1700oC. Недостатком этого носителя является использование дорогостоящего порошка альфа-оксида алюминия, получение которого требует сложных технологических операций и также высокотемпературной (> 1500oC) прокалки. Кроме того, альфа-оксид алюминия является высокообразивным веществом, что влечет за собой использование износостойкого дорогостоящего оборудования на стадии приготовления пасты для формования и самого формования. Для получения прочных гранул с низкой удельной поверхностью требуется высокая температура прокаливания (>1700oC) даже при введении до 1% бария, являющегося легкоплавким минерализатором. Высокая температура прокаливания гранул носителя до 1700oC требует больших энергозатрат. Все это делает носитель весьма дорогим продуктом.

Наиболее близким по технической сущности и достигаемому результату является носитель катализатора получения оксида этилена (Патент США N 5100859, МКП5 В 01 J 32/00, 1992) характеризующийся высокими начальными селективностями, длительным сроком службы. Носитель содержит не менее 85 мас.% альфа-оксида алюминия, оксид кальция или магния или их силикаты 0,01-6,0%, диоксид кремния 0,01-5,0% и диоксид циркония 0,01-10,0%. Носитель обладает объемом пор 0,2-0,6 см3/г и удельной поверхностью 0,1-3,0 м2/г.

Носитель готовят путем формования гранул из пасты, для приготовления которой используют тонкодисперсный высокой степени чистоты альфа-оксид алюминия, соединения кальция или магния, соединения циркония и кремния. Эти компоненты смешивают с водой и связующим веществом - выгорающей добавкой - полиолефином. После смешения паста формуется, затем подвергается сушке и прокаливанию для устранения выгорающего вещества и сплавления частиц альфа-оксида алюминия в пористую твердую массу при температуре свыше 1300oC, преимущественно 1350-1500oC, в течение 0,5-200 мин. Недостатки этого способа и носителя аналогичны описанным выше.

Задачей предлагаемого изобретения является разработка состава и способа получения высокопрочного носителя серебросодержащего катализатора для получения оксида этилена с оптимальными текстурными характеристиками, получаемого при температурах менее 1300oC из доступного недорогостоящего сырья.

Поставленная задача решается на предложенном носителе для катализатора получения оксида этилена и способе его приготовления.

Носитель серебросодержащего катализатора получения оксида этилена включает альфа-оксид алюминия, кальций, магний и кремний и дополнительно содержит натрий и каркасные алюмосиликаты- плагиоклазы, причем натрий, кальций, магний и кремний содержатся в носителе в виде одного соединения - аморфного силиката этих металлов и носитель имеет следующий состав, мас.%:

Соединение из аморфного силиката натрия, кальция, магния - 9,5-18,5

Алюмосиликаты-плагиоклазы - 5,5-13,0

Альфа-оксид алюминия - Остальное

В качестве алюмосиликатов-плагиоклазов носитель содержит преимущественно анортит CaAl2Si2O8 триклинной структуры и имеет следующий состав в пересчете на оксиды металлов, мас.%:

Диоксид кремния - 46,0-47,0

Оксид алюминия - 34,0-35,0

Оксид кальция - 16,0-17,0

Оксид натрия - 1,4-1,5

Соединение аморфного силиката натрия, кальция, магния в носителе имеет следующий состав в пересчете на оксиды металлов, мас.%:

Диоксид кремния - 73-74

Оксид натрия - 17-20

Оксид кальция - 2,0-3,5

Оксид магния - 4,6-6,5

Носитель имеет удельную поверхность 0,3-0,7 м2/г, объем пор 0,25-0,6 см3/г.

Способ получения носителя серебросодержащего катализатора получения оксида этилена, включает смешение альфа-оксида алюминия с соединением, содержащим кальций, магний, кремний с водой, связующим веществом - выгорающей добавкой, формование, прокаливание. Смешению подвергают соединение, состоящее из аморфного силиката натрия, кальция, магния в виде порошка, гидроксид алюминия, способный к образованию связующего вещества в присутствии пластификатора и содержащий не более 60% рентгеноаморфного гидроксида алюминия, выгорающую добавку, причем компоненты берут в таких количествах, чтобы готовый носитель содержал, мас.%:

Аморфный силикат кальция, натрия, магния - 9,5-18,5

Каркасные алюмосиликаты - плагиоклазы - 5,5-13,0

Альфа-оксид алюминия - Остальное

причем прокаливание проводят при 1230 - 1270oC до получения носителя с удельной поверхностью 0,3 - 0,7 м2/г и объемом пор 0,25 - 0,6 см3/г и имеющего вышеприведенный состав.

В качестве пептизатора используют одноосновные кислоты, предпочтительно азотную.

В качестве выгорающей добавки используют древесную муку с размером частиц менее 180 микрон, предпочтительно менее 63 микрон.

Гидроксид алюминия имеет размер частиц преимущественно менее 15 микрон.

Соединение в виде порошкообразного аморфного силиката натрия, кальция, магния имеет размер частиц менее 160 микрон, предпочтительно менее 63 микрон

Компоненты для смешения берут в таких количествах, чтобы в готовом носителе содержалось аморфного силиката натрия, кальция, магния (в виде одного соединения) 9,5-18,5%, каркасных алюмосиликатов-плагиоклазов - 5,5-13,0%, а остальное альфа-оксид алюминия. При этом существенную роль играет дисперсность порошков исходных компонентов, позволяющая получать оптимальную пористую структуру носителя и механическую прочность после прокаливания. Так, порошок соединения аморфного силиката натрия, кальция, магния имеет размер частиц менее 160 микрон, предпочтительно менее 63 микрон; порошок выгорающего вещества в виде древесной муки размер частиц менее 180 микрон, преимущественно менее 63 микрон, порошок гидроксида алюминия размер частиц преимущественно менее 15 мкм. Увеличение дисперсности выше указанных норм приводит к потере прочности носителя и увеличению удельной поверхности выше 0,7 м2/г. Снижение дисперсности ниже норм приводит к снижению влагоемкости менее 0,25 см3/г. В качестве пластификатора используется одноосновная кислота, предпочтительно азотная.

Гранулы после формования сушат и прокаливают при температуре 1230-1270oC до текстурных характеристик: удельной поверхности 0,3-0,7 м2/г, объема пор 0,25-0,6 см3/г и образования в составе носителя альфа-оксида алюминия, каркасных алюмосиликатов - плагиоклазов 5,5-13,0% и соединение аморфного силиката натрия, кальция, магния - 9,5-18,5%. Причем каркасные алюмосиликаты-плагиоклазы преимущественно в виде анортита CaAl2Si2O8 триклинной структуры.

Получаемый таким способом носитель серебросодержащего катализатора обладает высокой механической прочностью и удельной поверхностью 0,3-0,7 м2/г при достаточно низких, по сравнению с известными способами, температурах спекания (1230-1270oC) за счет образования каркасных алюмосиликатов-плагиоклазов триклинной структуры, которые "сшивают" алюмооксидный и силикатный компоненты структуры и блокируют поверхность оксида алюминия. Получение при температурах 1230-1270oC достаточно низких величин удельной поверхности 0,3-0,7 м2/г обусловлено использованием гидроксида алюминия, содержащего до 60% рентгеноаморфного гидроксида алюминия, являющегося наименее термостабильной фазой из известных гидроксидов алюминия (гиббсит, байерит, псевдобемит). Оптимальный объем пор 0,25-0,6 см3/г получается за счет регулируемого введения в состав массы выгорающей добавки, древесной муки, а также ее дисперсности.

Таким образом, поставленная задача решается на предложенном носителе катализатора получения оксида этилена и способе его приготовления, и существенными отличительными признаками носителя являются следующие признаки: носитель дополнительно содержит натрий и каркасные алюмосиликаты-плагиоклазы; причем натрий, кальций, магний и кремний содержатся в носителе в виде одного соединения - аморфного силиката этих металлов; носитель имеет следующий состав, мас.%:

Соединение из аморфного силиката натрия, кальция, магния - 9,5-18,5

Алюмосиликаты-плагиоклазы - 5,5-13,0

Альфа-оксид алюминия - Остальное

Существенными отличительными признаками способа получения носителя являются следующие: смешению подвергают соединение, состоящее из аморфного силиката натрия, кальция, магния в виде порошка, гидроксид алюминия способный к образованию связующего вещества в присутствии пластификатора и содержащий не более 60% рентгеноаморфного гидроксида алюминия, выгорающую добавку; компоненты берут в таких количествах, чтобы готовый носитель содержал, мас.%:

Аморфный силикат кальция, натрия, магния - 9,5-18,5

Алюмосиликаты - плагиоклазы - 5,5-13,0

Альфа-оксид алюминия - Остальное

причем прокаливание проводят при 1230 - 1270oC до получения такого состава носителя с удельной поверхностью 0,3 - 0,7 м2/г и объемом пор 0,25 - 0,6 см3/г.

Определение фазового состава носителя проводят рентгенографическим методом, основанным на дифракции рентгеновских лучей.

Съемку образцов проводят в CиK-излучении с использованием дифференциальной дискриминации и монохроматора. Интервал углов по шкале 2 носитель серебросодержащего катализатора получения оксида   этилена и способ его получения, патент № 2141378 от 10 до 75oC, угловая скорость движения детектора 1/60o.

Прочность на раздавливание по образующей (н/мм) определяют по усилию разрушения гранулы носителя между двумя параллельными пластинами.

Удельную поверхность определяют методом ВЕТ, объем пор адсорбцией воды.

Предлагаемое изобретение иллюстрируется следующими примерами.

Пример 1 (по прототипу)

Смешению подвергается смесь компонентов: порошок альфа-оксида алюминия со средним размером частиц 3,0-3,4 микрон и содержанием Na - 0,02-0,06 мас.% в количестве 98,9% мас., двуокись циркония - 1,0 вес.%.

Силикат кальция - 0,2 вес.%, выгорающая добавка в виде муки из скорлупы грецких орехов - 25 вес.%, борная кислота 0,1 вес.% экструдирующее вспомогательное - окись полиолефина - 5,0 вес.%. Смешение этих компонентов производится в течение 45 с, затем добавляется вода в количестве, необходимом для получения способной к экструдированию смеси (около 30%) и смешение производят еще 4 мин, затем добавляют 5% вазелина и еще перемешивают 3 мин. Эту массу экструдируют в форме цилиндров с диаметром около 8 мм и высушивают до влагосодержания 2%. После этого подвергают обжигу в туннельной печи при температуре 1390oC.

Носитель после прокаливания обладает следующими свойствами:

Влагоемкость - 0,43 см3

Предел прочности - 18,7 Ibs (англ. фунт)

что в пересчете на н/гранулу составляет 18,7носитель серебросодержащего катализатора получения оксида   этилена и способ его получения, патент № 21413780,45носитель серебросодержащего катализатора получения оксида   этилена и способ его получения, патент № 21413789,8 =83,2

Удельная поверхность - 0,56 м2/г.

Пример 2

Смешению подвергают смесь компонентов: порошок гидроксида алюминия с размером частиц менее 15 мкм и содержанием аморфного гидроксида алюминия 52% в количестве 80% (по оксиду алюминия), соединение в виде порошка из аморфного силиката натрия, кальция, магния с размером частиц менее 63 мкм в количестве 20%, выгорающую добавку в виде древесной муки в количестве 22% исходя из веса добавленных гидроксида алюминия, аморфного силиката натрия, кальция, магния. Смесь сухих компонентов перемешивают 10 минут, затем добавляют раствор азотной кислоты в количестве 3% и перемешивание ведут еще 15 минут до получения пасты, способной к экструдированию. Эту массу формуют в форме колец размером 8 мм, высушивают и прокаливают при температуре 700oC для удаления выгорающей добавки. После этого выжженные гранулы подвергают обжигу при температуре 1260oC в шахтной печи до получения удельной поверхности 0,5 м2/г, объема пор 0,39 см3/г и механической прочности 100 н/гранулу. При этом носитель содержит 78% альфа-оксида алюминия, 14,6% аморфного силиката натрия, кальция, магния, 7,4% каркасных алюмосиликатов-плагиоклазов.

Пример 3-8

Носитель готовят аналогично примеру 2, только отличается тем, что для приготовления носителя применяются разные марки гидроксида алюминия (таблица 1) и соединения из аморфного силиката натрия, кальция, магния (таблица 2), которые берут в количествах, необходимых для получения состава носителя, приведенного в таблице 3, где приведены также свойства получаемого носителя в зависимости от температуры прокаливания.

Как видно из представленных примеров (2, 3, 4, 5, 6), предложенный носитель для серебросодержащего катализатора получения оксида этилена, имеет высокую механическую прочность по сравнению с прототипом (пример 1) и оптимальные величины удельной поверхности и объема пор, которые получаются при прокалке при температурах гораздо ниже, приведенных в прототипе.

Снижение температуры прокаливания ниже 1230oC (пример 8) приводит к падению прочности носителя, увеличению поверхности в связи с уменьшением количества каркасных алюмосиликатов- плагиоклазов до 4 мас.%.

Увеличение температуры прокаливания выше 1270oC (пример 7) приводит к резкому снижению величины удельной поверхности и влагоемкости ниже нормы за счет блокирования поверхности оксида алюминия каркасными алюмосиликатами и аморфным силикатом.

Таким образом, предлагаемый носитель и способ его получения по сравнению с известными позволяет получить высокопрочный, с оптимальными текстурными характеристиками носитель для серебросодержащего катализатора.

Класс B01J21/12 диоксид кремния и оксид алюминия

носители катализатора на основе силикагеля -  патент 2522595 (20.07.2014)
объединенный способ каталитичеcкого крекинга в псевдоожиженном слое катализатора для получения высококачественных углеводородных смесей в качестве топлива -  патент 2518119 (10.06.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
катализатор для получения бутадиена превращением этанола -  патент 2514425 (27.04.2014)
катализатор окисления для оснащенных дизельным двигателем транспортных средств для перевозки пассажиров, грузов и для нетранспортных работ -  патент 2489206 (10.08.2013)
комплексный способ крекинга с псевдоожиженным катализатором для получения смесей углеводородов, обладающих высоким топливным качеством -  патент 2481388 (10.05.2013)
катализаторы гидрирования со связующими, имеющими низкую площадь поверхности -  патент 2480279 (27.04.2013)
катализатор синтеза фишера-тропша, способ его приготовления и применения -  патент 2478006 (27.03.2013)
катализатор синтеза фишера-тропша, его изготовление и применение -  патент 2477654 (20.03.2013)
катализатор, способ его приготовления и способ получения -пиколина -  патент 2474473 (10.02.2013)

Класс B01J32/00 Носители катализаторов вообще

состав шихты для высокопористого керамического материала с сетчато-ячеистой структурой -  патент 2525396 (10.08.2014)
фольга из нержавеющей стали и носитель катализатора для устройства очистки выхлопного газа, использующий эту фольгу -  патент 2518873 (10.06.2014)
способ получения нитрата металла на подложке -  патент 2516467 (20.05.2014)
носитель электрокатализатора для низкотемпературных спиртовых топливных элементов -  патент 2504051 (10.01.2014)
носитель, содержащий муллит, для катализаторов для получения этиленоксида -  патент 2495715 (20.10.2013)
способ получения дизельного топлива из твердых синтетических углеводородов, полученных по методу фишера-тропша, и катализатор для его осуществления -  патент 2493237 (20.09.2013)
геометрически классифицированный, имеющий определенную форму твердый носитель для катализатора эпоксидирования олефина -  патент 2492925 (20.09.2013)
способ изготовления текстильного катализатора (варианты) -  патент 2490065 (20.08.2013)
элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций -  патент 2489210 (10.08.2013)
способ получения углеродного носителя для катализаторов -  патент 2484899 (20.06.2013)

Класс B01J37/04 смешивание

способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена -  патент 2526981 (27.08.2014)
способ карбонилирования с использованием связанных содержащих серебро и/или медь морденитных катализаторов -  патент 2525916 (20.08.2014)
микросферический катализатор крекинга "октифайн" и способ его приготовления -  патент 2522438 (10.07.2014)
способ получения наноструктурного фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2517188 (27.05.2014)
катализатор на основе меди, нанесенный на мезопористый уголь, способ его получения и применения -  патент 2517108 (27.05.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
способ приготовления катализатора для получения ароматических углеводородов, катализатор, приготовленный по этому способу, и способ получения ароматических углеводородов с использованием полученного катализатора -  патент 2515511 (10.05.2014)
способ приготовления катализатора для окислительной конденсации метана, катализатор, приготовленный по этому способу, и способ окислительной конденсации метана с использованием полученного катализатора -  патент 2515497 (10.05.2014)
способ переработки биомассы в целлюлозу и раствор низкомолекулярных продуктов окисления (варианты) -  патент 2515319 (10.05.2014)
каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга и способ ее приготовления -  патент 2513106 (20.04.2014)

Класс C07D301/10 в присутствии катализаторов, содержащих серебро или золото

носитель, содержащий муллит, для катализаторов для получения этиленоксида -  патент 2495715 (20.10.2013)
геометрически классифицированный, имеющий определенную форму твердый носитель для катализатора эпоксидирования олефина -  патент 2492925 (20.09.2013)
способ инициирования высокоселективного катализатора получения этиленоксида -  патент 2474578 (10.02.2013)
реакторная система, абсорбент и способ осуществления реакции в подаваемом материале -  патент 2474470 (10.02.2013)
производство этиленоксида, в котором используют фиксированную концентрацию замедлителя -  патент 2473547 (27.01.2013)
способы получения этиленоксида и этиленгликоля -  патент 2462461 (27.09.2012)
способ гидроокисления с использованием катализатора, полученного из кластерного комплекса золота -  патент 2445159 (20.03.2012)
прокаливание в инертном газе в присутствии окисляющего компонента в небольшой концентрации -  патент 2411997 (20.02.2011)
способ приготовления носителя катализаторов и его применение при приготовлении катализаторов -  патент 2408424 (10.01.2011)
нанометровая реструктуризация поверхности носителя окиси алюминия и катализатор для получения окисей алкенов -  патент 2402376 (27.10.2010)
Наверх