способ определения профиля скорости потока жидкости в сечении трубопровода

Классы МПК:G01P5/00 Измерение скорости текучих сред, например воздушных потоков; измерение скорости твердых тел, например судов, самолетов и тп, относительно текучей среды
G01F1/66 измерением частоты, фазового сдвига, времени распространения электромагнитных или других волн, например ультразвуковые расходомеры
Автор(ы):, ,
Патентообладатель(и):Государственный научный центр РФ - Государственный научно- исследовательский институт теплоэнергетического приборостроения НИИтеплоприбор
Приоритеты:
подача заявки:
1997-06-16
публикация патента:

С помощью ультразвукового излучения измеряют скорости потока по определенным направлениям через определенные углы относительно центральной оси трубопровода. Определяют зависимость скорости от угла. Рассчитывают аналогичные зависимости по уравнениям Салами, описывающим различные реальные профили потока, и в результате сравнения полученной и расчетных зависимостей находят наиболее близкое к полученной зависимости уравнение Салами, соответствующее профилю скорости потока жидкости в контролируемом сечении. Изобретение обеспечивает повышение точности измерения расхода жидкости в условиях отсутствия протяженных прямолинейных участков трубопровода. 2 ил.
Рисунок 1, Рисунок 2

Формула изобретения

Способ определения профиля скорости потока жидкости в сечении трубопровода, заключающийся в измерении с помощью ультразвукового излучения скорости потока по определенным направлениям через определенные углы относительно центральной оси трубопровода, отличающийся тем, что определяют зависимость скорости от угла, рассчитывают аналогичные зависимости по уравнениям Салами и в результате сравнения полученной и расчетных зависимостей находят наиболее близкое к полученной зависимости уравнение Салами, соответствующее профилю скорости потока жидкости в контролируемом сечении.

Описание изобретения к патенту

Изобретение относится к области приборостроения, а именно к способам определения профиля скорости потока жидкости для полностью заполненных жидкостью трубопроводов вблизи различного рода гидравлических сопротивлений, которые делают поток асимметричным, с помощью просвечивания потока ультразвуковыми волнами. Предлагаемый способ может быть применен для повышения точности измерений расхода ультразвуковыми расходомерами либо любыми другими, принцип действия которых основан на измерении локальной скорости жидкости в случаях измерения расхода вблизи различных гидравлических сопротивлений, искажающих профиль потока жидкости. Способ реализуется путем нахождения поправочного коэффициента для точного измерения расхода жидкости.

Известен способ определения профиля скорости потока жидкости [1, 3], основанный на непосредственном измерении локальных скоростей жидкости по сечению трубопровода. По результатам измерения определяются профиль скорости потока жидкости, средняя скорость жидкости по сечению трубопровода. Локальные скорости могут быть замерены с помощью трубки Пито или миниатюрной турбинки.

Недостатками известного способа определения профиля скорости потока являются:

- необходимость встраивания в трубопровод специального устройства, обеспечивающего возможность перемещения чувствительного элемента внутри трубопровода с заданной точностью, при этом каждое устройство предназначено для определенного диаметра трубопровода. Трудоемкость этой операции столь велика, что не представляется возможным использовать ее в промышленных условиях;

- влияние измерительного устройств на профиль скорости потока, что приводит к дополнительным погрешностям;

- возможность проведения измерений только для чистых жидкостей.

Близким к предлагаемому способу определения профиля скоростей потока является способ, используемый при создании преобразователя расхода с несколькими парами приемоизлучающих головок [4], позволяющий учесть и оценить профиль потока жидкости с несимметричной эпюрой скоростей при измерении расхода.

Однако этот преобразователь расхода имеет ограниченное число пар приемоизлучающих головок и не может дать достаточно точные результаты для потоков с достаточно сложным профилем.

Наиболее близким к предлагаемому способу является способ определения профиля скоростей потока жидкости в трубе [5], где с целью определения несимметричного относительно трубы профиля скоростей потока источник излучения перемещают в плоскости, характеризующейся максимальной величиной площади сечения пространственной эпюры скоростей. При этом указанную плоскость выбирают путем поворота вспомогательного источника ультразвуковых волн вокруг трубы до получения максимума отклонения характеристики движения ультразвуковой волны по сравнению с покоящейся жидкостью.

Недостатком известного способа является невозможность получения приемлемой точности в условиях различных исследуемых сред.

Задачей, на решение которой направлено данное изобретение, является создание способа определения профиля скорости протока жидкости вблизи различных гидравлических сопротивлений, искажающих профиль потока жидкости, без нарушения целостности трубопровода.

Решение поставленной задачи достигается возможностью использования ультразвуковых расходомеров с накладными ультразвуковыми сенсорами (расходомеры, у которых выходной сигнал пропорционален средней скорости потока по ультразвуковому лучу, проходящему от излучающего сенсора к принимающему).

Способ определения профиля скорости потока жидкости в сечении трубопровода состоит в том, что с помощью ультразвукового излучения измеряют среднюю скорость потока по определенным направлениям через определенные углы относительно центральной оси трубопровода, определяют зависимость скорости от угла, рассчитывают по уравнениям Салами [2] зависимость скорости от угла по тем же направлениям, сравнивают полученную зависимость с расчетными, выбирают из расчетных зависимостей ту, которая наиболее близка к полученной экспериментально, находят соответствующее ей определенное аналитическое уравнение Салами, которое и будет описывать профиль потока данной жидкости в данном трубопроводе с высокой точностью.

По предлагаемому способу сенсоры устанавливаются в диаметральной плоскости на наружной поверхности исследуемого трубопровода. Снимается ряд показаний прибора (Vср) при перемещении ультразвуковых сенсоров через определенные углы (Q) относительно центральной оси трубопровода (приблизительно через 10o) (фиг. 1).

Строится зависимость относительной средней скорости от угла перемещения (фиг. 2).

В результате анализа 20-ти уравнений Салами [2], описывающих 20 реальных профилей потока, строятся 20 расчетных зависимостей средней скорости от угла перемещения относительно центральной оси трубопровода.

Выбирается расчетная зависимость, наиболее по форме близкая к экспериментальной. Данная расчетная зависимость соответствует определенному математическому уравнению Салами.

Это уравнение и будет описывать конкретный исследуемый профиль потока и позволит найти среднюю скорость потока жидкости по сечению трубопровода на данном конкретном участке трубопровода даже при отклонении потока в сечении от параллельно-струйности при высоком уровне турбулентности.

Техническим результатом от использования изобретения является повышение точности определения профиля скоростей потока в условиях отсутствия протяженных прямолинейных участков трубопровода.

Источники информации

1. Расход воды в напорных трубопроводах ГОСТ 8.439-81.

2. Применение компьютера для измерения асимметричного потока в круглых трубопроводах. Salami Z.A. "Trans. Inst. MC Vol 6. N 4 July - Sept 1984".

3. П. П. Кремлевский "Расходомеры и счетчики количества" (-Ленинград: Машиностроение, 1989 г.).

4. Ультразвуковой расходомер, авт. св. N 569854, Е.А. Борисевич, Н.Г. Кокшин, А.Г. Сафин, М.Б. Шахмаев.

5. Способ определения профиля скоростей потока жидкости в трубе. Заявка ФРГ N 4430223 A1, Changmin Technology Co., 1995.

Класс G01P5/00 Измерение скорости текучих сред, например воздушных потоков; измерение скорости твердых тел, например судов, самолетов и тп, относительно текучей среды

термоанемометр и способ нагрева его терморезисторной структуры -  патент 2528572 (20.09.2014)
анемометрический зонд с одной или несколькими проволочками и способ его осуществления -  патент 2524448 (27.07.2014)
способ бесконтактной оптико-лазерной диагностики нестационарного гидропотока и устройство для его реализации -  патент 2523737 (20.07.2014)
устройство для измерения эмиссии парниковых газов из почвы и растений -  патент 2518979 (10.06.2014)
система воздушных сигналов вертолета -  патент 2518871 (10.06.2014)
устройство регулирования анемометра с проволочкой -  патент 2510027 (20.03.2014)
способ измерения скорости потока и устройство для его осуществления -  патент 2506597 (10.02.2014)
вихревой датчик аэродинамического угла и истинной воздушной скорости -  патент 2506596 (10.02.2014)
автономное устройство для регистрации скорости и направления течения жидкости и газа -  патент 2503962 (10.01.2014)
электромагнитный лаг-дрейфомер -  патент 2503014 (27.12.2013)

Класс G01F1/66 измерением частоты, фазового сдвига, времени распространения электромагнитных или других волн, например ультразвуковые расходомеры

ультразвуковой способ определения скорости потока газовой среды и устройство для его осуществления -  патент 2529635 (27.09.2014)
способ измерения расхода жидкости -  патент 2525574 (20.08.2014)
ультразвуковой расходомер с дренажной системой для отведения жидкости -  патент 2522125 (10.07.2014)
способ измерения расхода двухфазного потока сыпучего диэлектрического материала, перемещаемого воздухом по металлическому трубопроводу -  патент 2518514 (10.06.2014)
ультразвуковой расходомер с блоком заглушки посадочного гнезда -  патент 2518033 (10.06.2014)
ультразвуковой расходорер, блок преобразователя с изолированным трансформаторным модулем -  патент 2518031 (10.06.2014)
ультразвуковой расходомер с преобразовательным блоком, содержащим приемник и коленчатый соединитель -  патент 2518030 (10.06.2014)
датчик ультразвукового расходомера -  патент 2517996 (10.06.2014)
система и способ обнаружения нароста отложений в ультразвуковом расходомере и машиночитаемый носитель информации -  патент 2514071 (27.04.2014)
преобразователь и способ его изготовления, ультразвуковой расходомер и способ измерения характеристик текучей среды -  патент 2509983 (20.03.2014)
Наверх