спеченный материал на основе серебра-окиси олова для электрических контактов и способ его получения

Классы МПК:C22C5/06 сплавы на основе серебра
H01H1/02 отличающиеся по материалу 
B22F3/16 с последовательным или повторным проведением процесса уплотнения и спекания 
C22C1/05 смеси металлического порошка с неметаллическим
Автор(ы):, ,
Патентообладатель(и):Дегусса Акциенгезельшафт (DE)
Приоритеты:
подача заявки:
1996-02-01
публикация патента:

Изобретение относится к спеченным материалам, получаемым методом порошковой металлургии. Спеченный материал содержит, вес.%: окись олова 3,2-19,9, окись индия 0,05-0,4, окись висмута 0,05-0,4, серебро остальное. Способ заключается в том, что смешивают порошки, затем прессуют порошковую смесь в холодном состоянии с применением равномерного давления со всех сторон, после этого спекают полученный материал при температуре от 500 до 940oС и штампуют проволоку или профили. При этом перед смешиванием с порошком серебра и с остальными окисными порошками более 60 вес.% порошка окиси олова выбирают размерами частиц больше 1 мкм. Порошок окиси висмута с порошком окиси олова термическим путем превращают в Bi2Sn2O7 - порошковую смесь окислов, более 60 вес. % которой имеет размер частиц больше 1 мкм, после этого эту порошковую смесь окислов смешивают с порошком серебра и порошком окиси индия. Спеченный материал проявляет максимально ограниченную склонность к свариванию и максимально ограниченные повышения температуры при переключении номинальных токов между 20 и 100 А и при АС3- нагрузке в переключателях обладает таким же сроком службы, что и серебро - окись кадмия. 2 с. и 3 з.п.ф-лы.

Формула изобретения

1. Спеченный материал на основе серебра - окиси олова для электрических контактов, полученный методом порошковой металлургии, содержащий добавки окиси индия и окиси висмута, отличающийся тем, что он содержит компоненты в следующем соотношении, вес.%:

Окись олова - 3,2 - 19,9

Окись индия - 0,05 - 0,4

Окись висмута - 0,05 - 0,4

Серебро - Остальное

2. Способ получения спеченного материала на основе серебра - окиси олова для электрических контактов, включающий смешивание порошка серебра и окисных порошков, прессование порошковой смеси в холодном состоянии с применением равномерного давления со всех сторон, спекание полученного материала при температурах от 500 до 940oC, экструзию проволоки или профилей, отличающийся тем, что более 60 вес.% порошка окиси олова при смешивании с порошком серебра и остальными окисными порошками выбирают с размером частиц больше 1 мкм.

3. Способ по п.2, отличающийся тем, что порошок окиси висмута с порошком окиси олова перед смешиванием с порошком серебра и окисью индия превращают термическим путем в Bi2Sn2O7 - порошковую смесь окислов, более 60 вес.% которой имеет размер частиц больше 1 мкм.

4. Способ по п.2, отличающийся тем, что окись олова прокаливают при температурах от 700 до 1400oC до тех пор, пока более 60 вес.% порошка будет иметь размер частиц больше 1 мкм.

5. Способ по п.3, отличающийся тем, что окись олова вместе с окисью висмута прокаливают при температурах от 700 до 1400oC до тех пор, пока более 60 вес.% порошковой смеси окислов будет иметь размер частиц больше 1 мкм.

Описание изобретения к патенту

Изобретение касается спекающегося материала, полученного методом порошковой металлургии, на основе серебра-окиси олова с добавками окиси индия и окиси висмута для электрических контактов, способного выдерживать переключения номинальных токов между 20 и 100 амперами, а также способ его получения.

Уровень техники.

Для изготовления электрических контактов в переключателях низкого напряжения применяются комбинированные материалы серебро/металл - и серебро/окись металла. В качестве комбинированного материала серебро/металл чаще всего используется серебро/никель, основная область применения которого - это более слабые токи. При сильных токах несколько лет назад применялись почти исключительно серебро/окись кадмия. В связи с требованиями по охране окружающей среды усиленно пытались заменить окись кадмия другими окислами. Между тем, окись олова во многих областях более эффективно используется как альтернатива окиси кадмия. Из-за более высокой термической стойкости окиси олова комбинированный материал серебро-окись олова имеет долю окалины отчетливо меньшую, по сравнению с серебром-окисью кадмия, что приводит к более длительному сроку службы переключателя. Недостаток AgSnO2 заключается в том, что он склонен к образованию покровного слоя и тем самым к более высоким нагревам в переключателях. С помощью определенных добавок, таких как WO3 или MoO3, эту проблему можно решить. Последние упомянутые материалы проявили себя исключительно хорошо в переключателях, которые предназначены выдерживать высокие термические нагрузки. Особенно хорошо проявил себя AgSnO2 с этими добавками в переключателях с номинальными токами более 100 ампер и при так называемой АС4-нагрузке. При более слабых токах переключения, разумеется, срок службы этих материалов относительно короткий.

Материал AgSnO2WO3/MoO3 получается методом порошковой металлургии путем экструзии. Получение методом порошковой металлургии имеет то преимущество, что могут применяться добавки любого типа и количества. Тем самым материал может быть оптимально нацелен на определенные свойства такие, как степень свариваемости или нагревание. Для этой цели, комбинация порошковой металлургии с экструзией позволяет достичь особо высокую экономичность при изготовлении контактных элементов.

Материал AgSnO2/In3 с внутренним окислением также находит применение. Этот материал, описанный в заявке Германии DE-OS 2428147, содержит наряду с 5-10% SnO2 еще 1-6% In2O3. Материалы с внутренним окислением имеют, однако, тот недостаток, что добавки должны выбираться относительно окислительной кинетики материалов. Целенаправленное изменение концентраций окисных добавок, для воздействия на определенные свойства на основании окислительной кинетики, часто невозможно. AgSnO2In2O3 имеет тот недостаток, что при переключении он приводит к большому повышению температуры.

В заявке Германии DE-OS 2754335 описан материал для контактов, который наряду с серебром содержит от 1,6 до 6,5% Bi2O3 и от 0,1 до 7,5% SnO2. Этот материал может быть получен как путем внутреннего окисления, так и методом порошковой металлургии. Но такое высокое содержание Bi2O3 приводит к хрупкости, таким образом, материал можно получить только методом отдельного спекания, а не более экономичными методами экструзии.

Из патента США US-PS 4680162 известен материал AgSnO2 с внутренним окислением, который при содержании олова более 4,5% может содержать добавки 0,1-5% индия и 0,01-5% висмута. Легированный металлический порошок уплотняется и затем внутренне окисляется. Благодаря этим добавкам неоднородные окисные выделения, обычные при внутреннем окислении, связываются. Однако оптимальных контактных свойств этот материал не проявляет.

В публикации "Investigation into the Switching behaviour of new Silber-Tin-Oxide Contact materials in Proc. of the 14th Int. Conf. on El. Conatacts Paris, 1988 г. июнь 20-24, стр. 405-409", сообщается о режиме коммутации электрических контактов из серебра-окиси олова, полученных методом порошковой металлургии, которые могут содержать два других окисла из ряда окись висмута, окись индия, окись меди, окись молибдена или окись вольфрама, причем о точном составе этих материалов ничего не сказано.

В патенте США US-PS 4695330 описывается специальный способ получения материала с внутренним окислением с 0,5-12% олова, 0,5-15% индия и 0,01-1,5% висмута. Этот способ, однако, требует очень больших расходов.

Получение методом порошковой металлургии материалов для контактов на основе серебра-окиси олова путем смешивания порошка, холодного изостатического прессования, спекания и экструзии в виде полуфабриката, известно, к примеру из заявок Германии DE-OS 4319137 и DE-OS 4331526.

Из патента США US-PS 4141727 известны материалы для контактов из серебра, которые содержат висмут - окись олова в качестве порошковой смеси окислов. Далее, в заявке Германии DE-PS 2952128 описывается способ, в котором порошок окиси олова перед смешиванием с порошком серебра прокаливается при 900 - 1600oC.

В средних диапазонах тока от 20 до 100 ампер до сих пор ни один из известных материалов AgSnO2 не мог заменить полностью токсичный материал AgCdO, так как в этой области применения AgCdO имеет очень высокий срок службы, который нельзя было получить от AgSnO2.

Сущность изобретения.

Поэтому целью предлагаемого изобретения является выделить для разработки спекающегося материала, полученного методом порошковой металлургии, на основе серебра-окиси олова с добавками окиси индия и окиси висмута для электрических контактов. Материал проявляет максимально ограниченную склонность к спеканию и максимально ограниченное повышение температуры при переключении номинальных токов между 20 и 100 амперами и при АС3-нагрузке в переключателях обладает таким же сроком службы, что и серебро-окись кадмия. Кроме того, способ получения материала должен быть экономичным и должен нести другие признаки усовершенствования.

Эта задача, согласно изобретению, решается тем, что материал состоит из следующего соотношения компонентов (вес.%): окись олова 3,2-19,9, окись индия и окись висмута 0,05-0,4 и серебро остальное.

Этот материал имеет при силе тока в диапазоне от 20 до 100 ампер большой срок службы с повышениями температуры не более 100oC. Особо хороших свойств достигают при получении материала путем смешивания порошка, спрессованного в холодном состоянии с применением равномерного давления со всех сторон порошковой смеси, спекания при температурах от 500 до 940oC и прессования проволоки или профилей, если размер частиц более 60 весовых % применяемого порошка окиси олова, перед смешиванием с порошком серебра и с остальными окисными порошками, составляет более 1 микрона.

Оказалось оправданным окись висмута перед смешиванием с порошком серебра и порошком окиси индия с порошком окиси олова, превратить в порошковую смесь окислов Bi2Sn2O7 которая, равным образом, более чем на 60 весовых % должна иметь размер частиц больше 1 микрона.

Так как обычная окись олова более чем на 70 весовых % имеет размер частиц меньше 1 микрона, необходимо этот порошок укрупнить. Это происходит преимущественно за счет того, что порошок окиси олова вместе с порошком окиси висмута прокаливается при температуре от 700 до 1400oC до тех пор, пока более чем 60 весовых % окиси олова и порошковой смеси окислов не будет иметь размер частиц больше 1 микрона. Применение этого укрупненного порошка после спекания прессизделий дает материал, который значительно менее ломок, чем материалы с традиционными размерами частиц, и поэтому может легче деформироваться.

Сведения, подтверждающие возможность осуществления изобретения.

Нижеприведенные примеры позволяют нагляднее представить изобретение:

1. Был получен материал со следующим соотношением компонентов (вес.%): Ag90SnO2 9,4, In2O3 0,4, Bi2O2 0,2, в котором традиционный SnO2-порошок, размер частиц которого на 82% в диапазоне меньше 1 микрона, при 1000oC в течение 2 часов был прокален на воздухе так, чтобы SnO2-порошок имел размер частиц, которые лишь на 25% в диапазоне меньше 1 микрона. Эти порошки были смешаны вместе с In2O3-порошком и Bi2O3-порошком и Ag-порошком соответственно меньше 63 микрон. Смесь прессовалась в штыри в холодном состоянии с применением равномерного давления со всех сторон и спекалась при 750oC в течение 2 часов. Штыри затем прессовались в профиль. Материал в традиционном переключателе с номинальным током спеченный материал на основе серебра-окиси олова для   электрических контактов и способ его получения, патент № 2144093 50 А имел срок службы 2 миллиона коммутационных циклов. Этот срок службы выше срока службы известных на сегодняшний день материалов -AgSnO2. Повышение температуры достигало некритических величин, в среднем ниже 100oC.

2. Был получен материал со следующим соотношением компонентов (вес.%): Ag88SnO2 11,4, In2O3 0,3, Bi2O3 0,3, согласно примеру 1. Этот материал также имел срок службы в два миллиона коммутационных циклов в традиционных переключателях с номинальным током спеченный материал на основе серебра-окиси олова для   электрических контактов и способ его получения, патент № 2144093 50 А. Повышение температуры достигало некритических величин, в среднем ниже 100oC.

3. Был получен материал со следующим соотношением компонентов (вес.%): Ag88SnO2 11,4, In2O3 0,3, Bi2O3 0,3, в котором традиционный SnO2-порошок, размер частиц которого на 82% в диапазоне меньше 1 микрона, смешивался с Bi2O3-порошком с величиной частиц меньше 32 микрон, и прокаливался при 1000oC в течение 15 часов на воздухе, таким образом получалась SnO2-Bi2O3 - смесь окислов с размером частиц лишь на 20% в диапазоне меньше 1 микрона. Этот порошок смешивался с Ag-порошком с размером частиц меньше 63 микрон и In2O3-порошком и прессовался в штырь в холодном состоянии с применением равномерного давления со всех сторон. Штырь затем спекался (750oC, 2 часа) и прессовался в профиль. Материал имел в традиционном переключателе с номинальным током спеченный материал на основе серебра-окиси олова для   электрических контактов и способ его получения, патент № 2144093 50 А срок службы свыше 2,2 миллионов коммутационных циклов. Повышение температуры достигало некритических величин, в среднем немного ниже 100oC.

4. Был получен материал со следующим соотношением компонентов (вес.%): Ag90SnO2 8,7, In2O3 0,5, Bi2O3 1,6, при этом традиционный SnO2-порошок, размер частиц которого на 82% в диапазоне меньше 1 микрона, в течение 60 часов прокаливался при 1000oC, и таким образом, SnO2-порошок имел размер частиц, который был лишь несколько меньше 5% в диапазоне меньше 1 микрона. Этот порошок, как и в примере 1, проходил дальнейшую обработку. Материал, состав которого не входит в сферу действия изобретения, может быть обработан лишь с большим трудом и срок службы его меньше срока службы материала по изобретению.

Класс C22C5/06 сплавы на основе серебра

сплав на основе серебра -  патент 2525975 (20.08.2014)
аморфный сплав для литья микропроводов -  патент 2393257 (27.06.2010)
сплав на основе серебра -  патент 2385965 (10.04.2010)
сплав на основе серебра -  патент 2355799 (20.05.2009)
сплав на основе серебра для наноструктурированных покрытий -  патент 2350673 (27.03.2009)
способ получения серебряно-оловооксидного материала для электрических контактов -  патент 2346069 (10.02.2009)
припой на основе серебра -  патент 2335385 (10.10.2008)
способ изготовления контакт-деталей из композиций серебро- оксид кадмия -  патент 2236717 (20.09.2004)
способ изготовления контакт-деталей из композиций серебра и оксида кадмия -  патент 2236327 (20.09.2004)
проволока из серебросодержащего материала для изготовления электрических контактов -  патент 2219608 (20.12.2003)

Класс H01H1/02 отличающиеся по материалу 

способ изготовления скользящих контактов -  патент 2529605 (27.09.2014)
способ нанесения покрытия для медных контактов электрокоммутирующих устройств -  патент 2509825 (20.03.2014)
контакт-деталь и способ ее изготовления -  патент 2451355 (20.05.2012)
способ изготовления электрических контактов на основе хрома и меди -  патент 2415487 (27.03.2011)
высокотемпературный металлокерамический композит -  патент 2389814 (20.05.2010)
материал для электрических контактов и способ изготовления электрических контактов -  патент 2380781 (27.01.2010)
способ изготовления электрических контактов на основе хрома и меди -  патент 2369935 (10.10.2009)
способ нанесения покрытия на разрывные алюминиевые контакты электрокоммутирующих устройств -  патент 2366756 (10.09.2009)
способ получения серебряно-оловооксидного материала для электрических контактов -  патент 2346069 (10.02.2009)
слоистый электрический контакт -  патент 2298246 (27.04.2007)

Класс B22F3/16 с последовательным или повторным проведением процесса уплотнения и спекания 

твердосплавное тело -  патент 2521937 (10.07.2014)
способ получения заготовок из порошковых металлических материалов -  патент 2504455 (20.01.2014)
способ прессования труб из магниевых гранул -  патент 2486991 (10.07.2013)
способ производства заготовок из жаропрочных порошковых сплавов -  патент 2449858 (10.05.2012)
способ получения изделий из пористых материалов искусственного и естественного происхождения с помощью холодного объемного деформирования -  патент 2413593 (10.03.2011)
способ изготовления ферритовых изделий -  патент 2410200 (27.01.2011)
способ получения композиционного материала на основе магниевой матрицы -  патент 2410199 (27.01.2011)
способ изготовления дисперсно-упрочненных изделий электроэрозионного назначения на основе меди -  патент 2402406 (27.10.2010)
способ получения антифрикционных порошковых материалов на основе меди -  патент 2378404 (10.01.2010)
способ прессования гранул магниевых сплавов -  патент 2370342 (20.10.2009)

Класс C22C1/05 смеси металлического порошка с неметаллическим

спеченная твердосплавная деталь и способ -  патент 2526627 (27.08.2014)
композиционный электроконтактный материал на основе меди и способ его получения -  патент 2525882 (20.08.2014)
способ получения поликристаллического композиционного материала -  патент 2525005 (10.08.2014)
шихта для изготовления материала для сильноточных электрических контактов и способ изготовления материала -  патент 2523156 (20.07.2014)
твердосплавное тело -  патент 2521937 (10.07.2014)
способ получения беспористого карбидочугуна для изготовления выглаживателей -  патент 2511226 (10.04.2014)
способ получения композиционного материала -  патент 2509818 (20.03.2014)
порошковый композиционный материал -  патент 2509817 (20.03.2014)
спеченный материал для сильноточного скользящего электроконтакта -  патент 2506334 (10.02.2014)
наноструктурный композиционный материал на основе чистого титана и способ его получения -  патент 2492256 (10.09.2013)
Наверх