способ получения катализатора конверсии оксида углерода водяным паром

Классы МПК:B01J23/78 с щелочными или щелочноземельными металлами или бериллием
B01J23/80 с цинком, кадмием или ртутью
B01J23/83 с редкоземельными или актинидами
B01J37/04 смешивание
Автор(ы):, , ,
Патентообладатель(и):Довганюк Владимир Федорович (RU)
Приоритеты:
подача заявки:
1999-12-17
публикация патента:

Изобретение относится к способам получения катализаторов на основе меди и цинка для процесса низкотемпературной паровой конверсии оксида углерода. Способ состоит в смешении цинкмедного соединения с алюминатами кальция, карбонатом марганца и активированным углем, формовании гранул катализатора с последующей термообработкой. При смешении компонентов катализатора дополнительно вводят, по крайней мере, одно соединение щелочноземельных металлов и/или, по крайней мере, одно соединение редкоземельных металлов, причем общее содержание дополнительной добавки не более 2,0 мас.%. Технический результат заключается в повышении термостабильности катализатора при сохранении высокой активности и прочности. 1 з.п. ф-лы, 2 табл.
Рисунок 1, Рисунок 2

Формула изобретения

1. Способ получения катализатора конверсии оксида углерода водяным паром, включающий смешение цинкмедного соединения с алюминатами кальция, карбонатом марганца и активированным углем, формование гранул катализатора с последующей термообработкой, отличающийся тем, что при смешении цинкмедного соединения с алюминатами кальция, карбонатом марганца и активированным углем дополнительно вводят, по крайней мере, одно соединение щелочноземельных металлов и/или, по крайней мере, одно соединение редкоземельных металлов при общем содержании не более 2,0 мас.%.

2. Способ получения катализатора конверсии оксида углерода водяным паром по п. 1, отличающийся тем, что в качестве соединения щелочноземельных металлов используют вещество, выбранное из группы: оксиды, гидроксиды, карбонаты кальция; оксиды, гидроксиды, карбонаты магния, а в качестве соединения редкоземельных металлов используют вещество, выбранное из группы: оксиды, гидроксиды, карбонаты лантана; оксиды, гидроксиды, карбонаты церия; оксиды, гидроксиды, карбонаты неодима.

Описание изобретения к патенту

Настоящее изобретение относится к способам получения катализаторов на основе меди и цинка для процесса низкотемпературной паровой конверсии оксида углерода.

Известен способ приготовления катализатора для паровой конверсии оксида углерода, включающий смешение и обработку медьсодержащих и цинксодержащих компонентов, оксида марганца и алюмината кальция комплексообразующим азотсодержащим агентом при 80-100oC с последующим формованием и сушкой при 100-200oC (SU 1380003).

Катализатор, приготовленный по этой технологии, не удовлетворяет требованиям по механической прочности и термостабильности. Термин "термостабильность" является устоявшимся и характеризует устойчивость активного компонента катализатора к спеканию при перегревах выше температуры эксплуатации (Catalyst Handbook, edited by Martyn V.Twigg, Manson publishing, 1989, England).

Наиболее близким к изобретению по технической сущности и достигаемым результатам является способ получения катализатора конверсии оксида углерода водяным паром, включающий смешение цинкмедного соединения с алюминатами кальция, карбонатом марганца и активированным углем, формование гранул катализатора с последующей термообработкой (SU 1732537).

В известном способе термообработку осуществляют путем провяливания на воздухе или сушки, которую проводят при 70-130oC в течение 2 - 6 часов.

Недостатком катализатора, полученного по этой технологии, является низкая термостабильность.

Сущность изобретения

Задачей, решаемой настоящим изобретением, является разработка и создание способа получения катализатора конверсии оксида углерода водяным паром, при котором катализатор приобретает улучшенные параметры при сохранении такой же активности и прочности, как у катализатора, полученного по способу - ближайшему аналогу.

В результате решения данной задачи реализуется новый технический результат, заключающийся в том, что повышается термостабильность катализатора.

Указанный технический результат достигается тем, что в способе получения катализатора конверсии оксида углерода водяным паром, включающем смешение цинкмедного соединения с алюминатами кальция, карбонатом марганца и активированным углем, формование гранул катализатора с последующей термообработкой, при смешении цинкмедного соединения с алюминатами кальция, карбонатом марганца и активированным углем, дополнительно вводят, по крайней мере, одно соединение щелочноземельных металлов и/или, по крайней мере, одно соединение редкоземельных металлов при общем содержании не более 2,0 мас.%.

В качестве соединения щелочноземельных металлов используют, вещество, выбранное из группы: оксиды, гидроксиды, карбонаты кальция; оксиды, гидроксиды, карбонаты магния, а в качестве соединения редкоземельных металлов используют вещество, выбранное из группы: оксиды, гидроксиды, карбонаты лантана; оксиды, гидроксиды, карбонаты церия; оксиды, гидроксиды, карбонаты неодима.

Основным отличительным признаком настоящего изобретения является то, что при смешении компонентов дополнительно вводят, по крайней мере, одно соединение щелочноземельных металлов и/или, по крайней мере, одно соединение редкоземельных металлов при общем содержании не более 2,0 мас.%.

Дополнительный отличительный признак состоит в том, что в качестве соединения щелочноземельных металлов используют вещество, выбранное из группы: оксиды, гидроксиды, карбонаты кальция; оксиды, гидроксиды, карбонаты магния, а в качестве соединения редкоземельных металлов используют вещество, выбранное из группы: оксиды, гидроксиды, карбонаты лантана; оксиды, гидроксиды, карбонаты церия; оксиды, гидроксиды, карбонаты неодима.

Предлагаемая совокупность признаков для способа получения катализатора конверсии оксида углерода водяным паром соответствует условиям патентоспособности "новизна" и "изобретательский уровень" по следующим соображениям. Из источников информации не известно, что предлагаемая совокупность признаков приводит к решению вышеуказанной задачи с получением нового технического результата, а именно: дополнительное введение соединений щелочноземельных металлов и/или соединений редкоземельных металлов при общем содержании не более 2,0 мас.% при смешении компонентов катализатора обеспечивает повышение термостабильности катализатора для низкотемпературной паровой конверсии оксида углерода при сохранении его высокой прочности и активности. Это объясняется тем, что добавление соединений щелочноземельных металлов при смешении компонентов катализатора увеличивает степень гидратации алюминатов кальция и соответственно степень взаимодействия активных компонентов с гидроксоалюминатами кальция, что приводит к развитию удельной поверхности катализатора, улучшению формуемости катализаторной массы и, в конечном итоге, к получению катализатора с повышенной термостабильностью. Добавление к компонентам катализатора соединений редкоземельных металлов препятствует спеканию активного компонента - меди, то есть также повышает термостабильность катализатора, его устойчивость к возможным перегревам при эксплуатации.

Вышеуказанные добавки соединений щелочноземельных и редкоземельных металлов нецелесообразно вводить в количестве более 2,0 мас.%, так как при повышенном содержании соединений щелочноземельных металлов в процессе гидратации алюминатов кальция возрастает содержание соединений типа кальцита, резко снижающих прочность катализатора, а повышенное содержание соединений редкоземельных металлов существенно снижает активность катализатора в конверсии оксида углерода водяным паром.

Сведения, подтверждающие возможность осуществления изобретения.

Пример 1 (по способу - ближайшему аналогу).

В смеситель загружают 250 г цинкмедного соединения с содержанием Zn0 - 43 мас.% и CuO - 57 мас.% (в пересчете на прокаленное вещество) и промоторы - 0,8 г молотого активированного угля, 0,6 г основного карбоната марганца, 70 г технического алюмината кальция. После смешения вышеуказанных веществ добавляют 45 мл воды, перемешивают и доводят массу до состояния формуемости. После формования гранул их сушат и подвергают термообработке в присутствии паров воды. Испытания полученного катализатора проводят при следующих условиях:

Температура 180oC, объемная скорость 5000 ч-1 соотношение пар:газ=0,7. Активность определяют как степень конверсии способ получения катализатора конверсии оксида углерода   водяным паром, патент № 2157279 оксида углерода, термостабильность как (способ получения катализатора конверсии оксида углерода   водяным паром, патент № 2157279-способ получения катализатора конверсии оксида углерода   водяным паром, патент № 21572791)/способ получения катализатора конверсии оксида углерода   водяным паром, патент № 2157279, где способ получения катализатора конверсии оксида углерода   водяным паром, патент № 2157279 - где степень конверсии оксида углерода, способ получения катализатора конверсии оксида углерода   водяным паром, патент № 21572791 - степень конверсии оксида углерода после перегрева катализатора при 350oC в течение 2 ч в условиях реакционной среды. Уменьшение значения этого показателя означает повышение термостабильности катализатора, то есть улучшение его эксплуатационной характеристики.

Результаты испытаний прочности, активности и термостабильности образца катализатора в процессе низкотемпературной паровой конверсии оксида углерода приведены в табл. 1.

Ниже приведены примеры (2 - 6) для описываемого способа получения катализатора конверсии оксида углерода водяным паром.

Испытания образцов катализатора, полученных по примерам (2 - 6), проводят, как в примере 1. Результаты испытаний приведены в табл. 1.

Пример 2.

Катализатор готовят и испытывают как в примере 4, но дополнительно вводят 1,00 г оксида кальция.

Пример 3.

Катализатор готовят и испытывают как в примере 1, но дополнительно вводят 0,84 г карбоната лантана, 0,27 г карбоната церия и 0,10 г гидроксида неодима.

Пример 4.

Катализатор готовят и испытывают как в примере 1, но дополнительно вводят 1,06 г гидроксида кальция и 0,2 г оксида магния.

Пример 5.

Катализатор готовят и испытывают как в примере 1, но дополнительно вводят 1,07 карбоната кальция и 0,4 г оксида церия.

Пример 6 (с предельным содержанием соединений щелочноземельных и редкоземельных металлов).

Катализатор готовят и испытывают как в примере 1, но дополнительно вводят 0,5 г оксида кальция, 1,16 г гидроксида магния, 1,20 г оксида лантана, 0,10 г гидроксида церия и 0,9 г оксида неодима.

Из сравнения примера 1 (способа - ближайшего аналога) с примерами (2 - 6) для описываемого способа приготовления катализатора видно, что при дополнительном введении соединений щелочноземельных и/или редкоземельных металлов в количестве не более 2,0 мас.% получают катализатор с повышенной термостабильностью при сохранении высокой активности и прочности на уровне катализатора, полученного по способу - ближайшему аналогу.

Пример 7 (с запредельным содержанием соединений щелочноземельных и редкоземельных металлов).

Катализатор готовят и испытывают как в примере 1, но дополнительно вводят 1,00 г оксида кальция, 1,00 г оксида магния, 0,84 г карбоната лантана, 1,0 г оксида церия и 0,49 г гидроксида неодима.

Как видно из результатов испытаний, при запредельном содержании щелочноземельных и редкоземельных металлов резко уменьшается прочность катализатора и снижается его активность.

В табл. 2 приведены данные по содержанию в образцах катализатора соединений щелочноземельных и редкоземельных металлов.

Класс B01J23/78 с щелочными или щелочноземельными металлами или бериллием

катализатор на основе меди, нанесенный на мезопористый уголь, способ его получения и применения -  патент 2517108 (27.05.2014)
способ определения устойчивости катализатора для дегидрирования алкилароматических углеводородов -  патент 2508163 (27.02.2014)
способ получения катализатора синтеза углеводородов и его применение в процессе синтеза углеводородов -  патент 2502559 (27.12.2013)
применение твердых веществ на основе феррита цинка в способе глубокого обессеривания кислородсодержащего сырья -  патент 2500791 (10.12.2013)
композитный оксид катализатора риформинга углеводородов, способ его получения и способ получения синтез-газа с его использованием -  патент 2476267 (27.02.2013)
катализатор на основе fe для синтеза фишера-тропша, способ его приготовления и применения -  патент 2468863 (10.12.2012)
катализатор для очистки выхлопного газа и использующее его устройство для очистки выхлопного газа -  патент 2467794 (27.11.2012)
катализатор и способ получения алифатических углеводородов из оксида углерода и водорода в его присутствии -  патент 2466790 (20.11.2012)
катализатор парового риформинга углеводородов метанового ряда c1-c4 и способ его приготовления -  патент 2462306 (27.09.2012)
способ получения оксидов олефинов -  патент 2461553 (20.09.2012)

Класс B01J23/80 с цинком, кадмием или ртутью

Класс B01J23/83 с редкоземельными или актинидами

катализатор на основе меди, нанесенный на мезопористый уголь, способ его получения и применения -  патент 2517108 (27.05.2014)
устойчивый к воздействию температуры катализатор для окисления хлороводорода в газовой фазе -  патент 2486006 (27.06.2013)
способ получения катализатора паровой конверсии метансодержащих углеводородов -  патент 2483799 (10.06.2013)
катализатор и способ изготовления хлора путем окисления хлороводорода в газовой фазе -  патент 2469790 (20.12.2012)
катализатор парового риформинга углеводородов метанового ряда c1-c4 и способ его приготовления -  патент 2462306 (27.09.2012)
катализатор дегидрирования изоамиленов -  патент 2458737 (20.08.2012)
катализатор, способ его получения и его применение для разложения n2o -  патент 2456074 (20.07.2012)
катализатор и способ получения синтез-газа -  патент 2453366 (20.06.2012)
катализатор парового риформинга углеводородов и способ его получения -  патент 2446879 (10.04.2012)
способ получения синтез-газа -  патент 2433950 (20.11.2011)

Класс B01J37/04 смешивание

способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена -  патент 2526981 (27.08.2014)
способ карбонилирования с использованием связанных содержащих серебро и/или медь морденитных катализаторов -  патент 2525916 (20.08.2014)
микросферический катализатор крекинга "октифайн" и способ его приготовления -  патент 2522438 (10.07.2014)
способ получения наноструктурного фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2517188 (27.05.2014)
катализатор на основе меди, нанесенный на мезопористый уголь, способ его получения и применения -  патент 2517108 (27.05.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
способ приготовления катализатора для получения ароматических углеводородов, катализатор, приготовленный по этому способу, и способ получения ароматических углеводородов с использованием полученного катализатора -  патент 2515511 (10.05.2014)
способ приготовления катализатора для окислительной конденсации метана, катализатор, приготовленный по этому способу, и способ окислительной конденсации метана с использованием полученного катализатора -  патент 2515497 (10.05.2014)
способ переработки биомассы в целлюлозу и раствор низкомолекулярных продуктов окисления (варианты) -  патент 2515319 (10.05.2014)
каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга и способ ее приготовления -  патент 2513106 (20.04.2014)
Наверх