способ геофизической разведки для определения нефтегазопродуктивных типов геологического разреза переменной толщины

Классы МПК:G01V11/00 Разведка или обнаружение с использованием комбинированных способов, представляющих собой сочетание двух и более способов, отнесенных к группам  1/00
Автор(ы):, , , , ,
Патентообладатель(и):Закрытое акционерное общество "Моделирование и мониторинг геологических объектов" им. В.А. Двуреченского
Приоритеты:
подача заявки:
2002-05-31
публикация патента:

Использование: в нефтяной геологии, в частности, для оптимизации размещения разведочных и эксплуатационных скважин на исследуемом объекте в условиях изменяющейся толщины нефтегазопродуктивных горных пород по комплексу данных наземной сейсмической разведки, электрического, радиоактивного, акустического, сейсмического каротажа, изучения керна и испытания скважин. Сущность изобретения: проводят сейсморазведочные работы МОГТ, бурение скважин с отбором керна, электрический, радиоактивный, акустический, сейсмический каротаж, испытание скважин, исследование керна. По совокупности данных бурения проводят эталонную типизацию разреза с использованием количественных спектрально-временных параметров результатов геофизических исследований скважин. По данным наземной сейсморазведки в районе скважин определяют эталонные модельные и экспериментальные спектрально-временные образы нефтегазопродуктивных и других типов геологического разреза. Проводят определение шести спектрально-временных параметров, откорректированных за влияние переменного по длительности анализируемого сейсмического импульса и сопоставляют их с эталонными, что позволяет количественно определить нефтегазопродуктивные типы геологического разреза переменной толщины в любой точке межскважинного пространства. Технический результат: снижение затрат на бурение.

Формула изобретения

Способ геофизической разведки для определения нефтегазопродуктивных типов геологического разреза переменной толщины, включающий проведение сейсморазведочных работ МОГТ, бурение скважин с отбором керна, проведение электрического, радиоактивного, акустического, сейсмического каротажа, испытание скважин, исследование керна и суждение по полученным данным о нефтегазопродуктивных типах геологического разреза исследуемого объекта, отличающийся тем, что по совокупности данных бурения проводят эталонную типизацию разреза с использованием количественных спектрально-временных параметров результатов геофизических исследований скважин, представляющих собой произведение удельных по частоте и времени спектральных плотностей энергетических частотного и временного спектров на максимальные частоту и время, определяемые на уровне 0,7 максимума спектра, либо на средневзвешенные значения частоты и времени, а также отношение энергии высоких частот и больших времен к энергии низких частот и малых времен, по данным наземной сейсморазведки в районе скважин определяют эталонные модельные и экспериментальные спектрально-временные образы нефтегазопродуктивных и других типов геологического разреза, характеризующиеся спектрально-временными параметрами результатов геофизических исследований скважин, исправленными за влияние переменной длительности сейсмического импульса, соответствующего переменной толщине целевых отложений, затем по всем сейсмическим профилям непрерывно в постоянном максимальном целевом интервале сейсмической записи, соответствующем максимальной толщине нефтегазопродуктивных горных пород, проводится спектрально-временной анализ с обнулением той части записи, которая не соответствует целевым отложениям при уменьшении их толщины, что выявляется при корреляции соответствующих отражающих горизонтов на временных разрезах, после этого производится определение шести спектрально-временных параметров, откорректированных за влияние переменного по длительности анализируемого сейсмического импульса и сопоставление их с эталонными, что позволяет количественно определить нефтегазопродуктивные типы геологического разреза переменной толщины в любой точке межскважинного пространства.

Описание изобретения к патенту

Изобретение относится к нефтяной геологии и может быть использовано для оптимизации размещения разведочных и эксплуатационных скважин на исследуемом объекте в условиях изменяющейся толщины нефтегазопродуктивных горных пород по комплексу данных наземной сейсмической разведки, электрического, радиоактивного, акустического, сейсмического каротажа, изучения керна и испытания скважин.

Известен способ геофизической разведки для определения нефтегазопродуктивных типов геологического разреза, принятый за прототип, включающий проведение сейсморазведочных работ, бурение скважин с отбором керна, проведение электрического, радиоактивного и акустического каротажа, испытание скважин и суждение по полученным данным о нефтегазопродуктивных типах геологического разреза исследуемого объекта. По совокупности данных бурения проводят эталонную типизацию разреза и определение модельных эталонных спектрально-временных образов (СВО), а по данным наземной сейсморазведки в районе скважин определяют эталонные экспериментальные СВО нефтегазопродуктивных и других типов геологического разреза на основе применения спектрально-временного анализа (СВАН) данных сейсморазведки в целевом интервале записи и количественной оценки его результатов с помощью определения спектрально-временных параметров (СВП), представляющих собой произведения удельных по частоте и времени спектральных плотностей энергетических спектров на частоту и время их максимумов или на средневзвешенные значения частоты и времени, а также отношения энергии высоких и низких частот, больших и малых времен. Затем по всем сейсмическим профилям, непрерывно, в целевом интервале записи проводится СВАН и его количественная спектрально-временная параметризация по частоте и времени, а результаты сопоставляются с эталонными, что позволяет количественно определять нефтегазопродуктивные типы геологического разреза в любой точке межскважинного пространства.

Недостатками этого способа являются:

- типизация геологического разреза по совокупности данных бурения и ГИС без применения СВАН и СВП;

- проведение СВАН данных сейсморазведки в одном постоянном временном интервале и соответственно получение СВО различных типов геологического разреза постоянной толщины.

В силу указанных недостатков способа-прототипа, его применение может привести к ошибкам при определении типов эталонных геологических разрезов скважин, главным образом со стороны согласования скважинных эталонов с разрешающей способностью сейсморазведки, а также при определении типов геологического разреза нефтегазопродуктивных горных пород переменной толщины (например, клиноформ), по данным сейсморазведки, в связи с вынужденным разбиением всей исследуемой территории на отдельные зоны с постоянной толщиной целевых отложений.

Недостатком такого подхода является и то обстоятельство, что в пределах отдельных зон с постоянной толщиной продуктивных горных пород может не оказаться скважин, что делает невозможным картирование нефтегазопродуктивных типов разреза по всей исследуемой территории.

Задачей, на решение которой направлено данное предложение, является обеспечение резкого снижения затрат на бурение последующих разведочных и эксплуатационных скважин за счет определения с высокой точностью интегральной геологической характеристики (типа разреза) нефтегазопродуктивных горных пород переменной толщины в любой точке межскважинного пространства по данным наземной сейсмической разведки, увязанным с результатами бурения.

Поставленная задача решается таким образом, что в способе, включающем наземную сейсморазведку МОГТ, бурение скважин, электрический, радиоактивный, акустический, сейсмический каротаж, испытание скважин и исследование керна нефтегазопродуктивные и другие типы геологического разреза переменной толщины определяются интегрально по совокупности данных бурения: литологической и гранулометрической характеристикам, особенностям развития литогенеза, толщине целевого интервала, эффективной толщине коллекторов, их пористости, емкости и проницаемости, спектрально-временным параметрам результатов геофизических исследований скважин, гидропроводности и продуктивности.

По данным бурения, в том числе и количественным спектрально-временным параметрам (СВП), полученным на основе спектрально-временного анализа (СВАН) результатов геофизических исследований скважин, определяют нефтегазопродуктивные и другие типы геологического разреза переменной толщины (см. Э.А. Таратын, И.А. Мушин, В.Я. Птохов, О.Г. Беляева. "Спектрально-временной анализ данных ГИС для их комплексирования с сейсморазведкой", Прикладная геофизика, вып. 128, М., Недра, 1993, с. 137-150; И.А. Мушин, Л.Ю. Бродов, Е.А. Козлов, Ф. И. Хатьянов. "Структурно-формационная интерпретация сейсмических данных". М., Недра, 1990, 299 с.).

По данным бурения и ГИС рассчитывают модельные (синтетические) сейсмические трассы, по которым проводят СВАН и количественную параметризацию его результатов в виде тех же СВП, что и ГИС. При этом временной интервал СВАН берется постоянным, соответствующим максимальной толщине целевых отложений, а во всех остальных случаях, когда толщина целевых отложений уменьшается, в том же максимальном временном интервале анализа остается только та часть сейсмической записи, которая соответствует изменившейся (уменьшившейся) толщине целевых отложений, остальная часть записи обнуляется.

Поскольку результаты СВАН данных сейсморазведки зависят не только oт совокупности физических свойств различных типов геологического разреза, но и длительности импульса, в СВП вносятся поправочные коэффициенты, учитывающие обратную пропорциональность длительности сигнала и ширину спектра (см. Харкевич А. А. "Спектры и анализа. М., Гос. издательство физ. -мат. литературы, 1962, с. 235.).

СВАН-колонки и СВП синтетических сейсмических трасс образуют модельные спектрально-временные образы (СВО) нефтегазопродуктивных и других типов геологического разреза переменной толщины.

По данным наземной сейсморазведки МОГТ в районе скважин определяют экспериментальные СВО в тех же интервалах сейсмической записи, соответствующих установленным по данным бурения нефтегазопродуктивным типам геологического разреза переменной толщины. При этом в СВП вносятся те же поправочные коэффициенты, что и при определении модельных СВП, учитывающие обратную пропорциональность длительности сигнала и ширину спектров.

Эти экспериментальные СВО в районе скважин совместно с модельными СВО при коэффициенте взаимной корреляции (КВК) между ними >0,75 являются сейсмическими эталонами различных типов геологического разреза.

На основе непрерывного СВАН временных разрезов по сейсмическим профилям с постоянным временным интервалом анализа, соответствующим максимальной толщине нефтегазопродуктивных горных пород, и обнуленной в этом максимальном интервале части сейсмической записи, не соответствующей целевым отложениям при уменьшении их толщины, определяют СВО целевых интервалов сейсмической записи в межскважинном пространстве с поправочными для СВП коэффициентами, учитывающими обратную пропорциональность длительности сигнала и ширины спектров, а затем, используя эталонные СВО, определяют нефтегазопродуктивные и другие типы геологического разреза переменной толщины в любой точке изучаемого объекта.

Технический результат выражается в картировании нефтегазопродуктивных и других типов геологического разреза переменной толщины по площади и, таким образом, повышении надежности и точности обоснования геологических условий заложения новых разведочных и эксплуатационных скважин.

Способ геофизической разведки для определения нефтегазопродуктивных типов геологического разреза переменной толщины включает проведение сейсморазведочных работ, бурение скважин, электрический, радиоактивный, акустический, сейсмический каротаж, испытание скважин и исследование керна.

По данным бурения и ГИС проводят типизацию разреза, включая определение нефтегазопродуктивных типов геологическою разреза по совокупности признаков на количественном и качественном уровнях - спектрально-временным параметрам (СВП) кривых ГИС, литологофациальной и гранулометрической характеристикам, особенностям развития литогенеза, толщине целевого интервала, эффективной толщине коллекторов, их пористости, емкости, проницаемости, гидропроводности, продуктивности скважин. При этом выделенные различные типы геологического разреза обладают такими физическими свойствами, которые отображаются в различных спектрально-временных образах (СВО) кривых ГИС, т.е. качественно (визуально) в распределении амплитуд на СВАН-колонке по координатам частота-время, и количественно по спектрально-временным параметрам (СВП) энергетических частотного (по оси частот) и временного (по оси времен) спектров.

СВАН кривых ГИС (СВАН-каротаж) обеспечивает и другую принципиальную особенность типизации разреза скважин - соответствие количества типов разреза разрешенности сейсмической записи на основе ее СВАН и количественной параметризации по тем же спектрально-временным параметрам, что и данные ГИС.

По данным акустического и радиоактивного каротажа, лабораторных исследований керна устанавливаются жесткостные модели в скважинах, рассчитываются синтетические сейсмические трассы, составляются модельные сейсмические разрезы, по которым проводят СВАН и определяют эталонные модельные СВО, включая СВП нефтегазопродуктивных и других типов геологического разреза.

По данным сейсморазведки МОГТ на основе СВАН определяют экспериментальные эталонные СВО, включая СВП в районе скважин, соответствующие нефтегазопродуктивным и другим типам геологического разреза в целевых временных интервалах.

Модельные и экспериментальные СВО нефтегазопродуктивных и других типов геологического разреза, включая СВП, должны быть подобными с КВК>0,75, что свидетельствует об обоснованном выборе эталонных СВО по данным сейсморазведки.

СВО представляет собой СВАН-колонку, которая характеризуется количественно по двум осям и 6 (шести) параметрам (3 по частоте и симметрично 3 по времени):

способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434

способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434

способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434

способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434

способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434

способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434

где К1(f) и K4(t) - отношение энергии высоких частот и больших времен к энергии низких частот и меньших времен; K2(f) и K5(t) - удельные спектральные плотности энергетического частотного и временного спектров, умноженные на средневзвешенные частоту и время; K3(f) и K6(t) - то же, умноженное на максимальные частоту и время; f1 - начальная частота спектра, f2 конечная частота спектра; способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434f=f2-f1; способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 t1, t2, способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434t, tср - то же по оси времен; Ai, Aj - текущие амплитуды спектров по оси частот и времен; fi и tj - текущие частота и время для Ai и Aj.

Совокупность шести спектрально-временных параметров K1-K6 количественно определяет эталонные СВО нефтегазопродуктивных и других типов геологического разреза переменной толщины, т.е. в индивидуальном для каждого СВО- эталонов временном интервале. Разница в СВО при этом, как уже указано выше, обязана не только различным типам разреза, но и переменной величине исследуемого импульса.

Для учета влияния переменного интервала СВАН все СВП (K1-K6) приводятся к одному интервалу - максимальному или минимальному - следующим образом.

Известно, что ширина спектра (способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434f) обратно пропорциональна длительности функции f(t), что в нашем случае эквивалентно временному интервалу СВАН (способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434t), который соответствует толщине целевых изучаемых отложений, т.е. способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434fспособ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434t = способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434. Для прямоугольного импульса способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434=1, треугольного - 2, косинусоидального - 1,5, а для участка сейсмической трассы (способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434t), подвергающегося СВАН, способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434fспособ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434t = способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 - величина неизвестная, поскольку анализируется импульс произвольной сложной формы.

Величина способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 может быть определена экспериментально путем СВАН сейсмической записи в различных временных интервалах, соответствующих переменной толщине нефтегазопродуктивных пород в эталонных скважинах. Зная способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434t по данным АК и наземной сейсморазведки МОГТ (временные разрезы) и определяя способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434f по СВАН, находим способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 для каждого из n эталонов типов разреза и m эталонных вариантов, в т. ч. при способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434tmax, способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434tmin и нескольких промежуточных значениях способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434ti. Для всего изучаемого объекта с числом типов разреза n находится или постоянное среднее значение способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 или принимается переменное способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434, с постоянством для различных геологически однородных зон.

Таким образом, выясняется степень обратной пропорциональности ширины спектров и длительности анализируемых импульсов, т.е. интервалов СВАН. Эта степень может быть как простой (способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434=1), так и отличной от классической при 1<способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434>1 для сложных сейсмических импульсов.

Зная способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434, можно определить поправочный коэффициент способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 для способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 учитывающий разницу в ширине спектров - способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434f - анализируемых сейсмических импульсов, возникшую не из-за разной формы импульсов (разных типах разреза), а по причине переменной их длительности - способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434t.

Для этого все сопоставления проводятся или с способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434fmin при способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434tmax, или с способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 max при способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434tmin.

В первом случае способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 Любой другой импульс длительностью способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434ti имеет спектр с способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 Но это в том случае, когда способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434=const в интервале сопоставления, т.е. это или весь изучаемый объект или его часть, в которой способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434=const. Отсюда следует, что сопоставление спектра способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434fi со спектром, характеризующимся способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434fmin (при способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434tmax), для выяснения их разницы (или тождества), т. е. определения типа разреза, необходимо способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434fi разделить на способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 т. е. учесть разницу в способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434f, обязанную не форме импульсов (типам разреза), а их длительности и, соответственно, интервалов СВАН. При выборе за основу способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434tmin и, соответственно, способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434fmax, необходимо способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434fi умножить на способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434. Таким образом, сопоставляются спектры с способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 или способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434f = способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434fi.

Для временного спектра (по оси времен) его ширина прямо пропорциональна временному интервалу анализа. Предложенные СВП, количественно характеризующие результаты СВАН (K1-K6), учитывают изложенные выше трансформации ширины спектров в зависимости от длительности сейсмических импульсов (толщины целевых отложений).

СВИ K1 и K4, представляющие собой отношение спектральных плотностей энергетических спектров высоких и низких частот, больших и малых времен, в силу симметрии расширения или сжатия спектров, не изменяются, т.е. не зависят от длительности сейсмических импульсов; спектральная плотность (на 1 Гц и 1 мсек) есть величина постоянная при любой длительности импульса, а зависимость средневзвешенной или максимальной частоты и времени от длительности импульсов определяется экспериментально точно так же, как способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 и способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434.

Таким образом, сопоставляются СВП К2, К3 и К5, К6: способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434, если за основу берется способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434tmax и способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434fmin и К2, К3 и К5, К6, х способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434, если за основу берется способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434tmin и способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434fmax. Здесь способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 - поправочный коэффициент, равный способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 где способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 - степень обратной пропорциональности длительности импульса и средневзвешенной и максимальной частоты в формулах для K2, K3 и K5, K6, определяемая экспериментально.

Из всего вышеизложенного следует, что реализация способа геофизической разведки для определения нефтегазопродуктивных и других типов геологического разреза переменной толщины состоит из следующих этапов:

- бурения скважин и ГИС;

- наземной сейсморазведки МОГТ;

- типизации разреза по данным бурения с количественной характеристикой (СВП) типов разреза на основе СВАН кривых ГИС;

- создания модельных и экспериментальных эталонных СВО;

- определения степени обратной пропорциональности ширины спектров и длительности импульсов (способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434);

- определения корректирующего коэффициента ширины спектра, учитывающего длительность импульсов (способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434);

- определения корректирующего коэффициента способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 для средневзвешенной и максимальной частоты СВП К2, К3 и средневзвешенного и максимального времени СВП К5, К6;

- корреляции временных разрезов по сейсмическим профилям и определения временных интервалов СВАН (способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434t);

- проведения СВАН с максимальным способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434t и обнулением части сейсмической записи, не соответствующей нефтегазопродуктивным отложениям при уменьшении их толщин;

- определения СВП К16 с использованием поправочных коэффициентов способ геофизической разведки для определения   нефтегазопродуктивных типов геологического разреза   переменной толщины, патент № 2205434 для СВП К2, К3 и К5, К6;

- определения типов геологического разреза по сейсмическим профилям путем сопоставления эталонных и экспериментальных СВП;

- построения карты типов геологического разреза.

Класс G01V11/00 Разведка или обнаружение с использованием комбинированных способов, представляющих собой сочетание двух и более способов, отнесенных к группам  1/00

способы и системы для скважинной телеметрии -  патент 2529595 (27.09.2014)
способ геофизической разведки залежей углеводородов -  патент 2527322 (27.08.2014)
способ геохимической разведки -  патент 2525644 (20.08.2014)
способ обнаружения возможности наступления катастрофических явлений -  патент 2521762 (10.07.2014)
модульная донная станция -  патент 2521218 (27.06.2014)
способ определения нефтенасыщенных пластов -  патент 2517730 (27.05.2014)
способ разработки нефтяных залежей -  патент 2513895 (20.04.2014)
способ поиска и добычи нефти -  патент 2507381 (20.02.2014)
способ и устройство для определения во время бурения насыщения водой пласта -  патент 2503981 (10.01.2014)
способ прогнозирования глубокозалегающих горизонтов на акваториях по результатам тренд-анализа магнитных и гравитационных аномалий -  патент 2501047 (10.12.2013)
Наверх