способ приготовления композитного алюмосиликатного материала

Классы МПК:B01J21/04 оксид алюминия
B01J21/12 диоксид кремния и оксид алюминия
B01J21/16 глины или прочие минеральные силикаты
B01J32/00 Носители катализаторов вообще
Автор(ы):, , , ,
Патентообладатель(и):Институт катализа им. Г.К. Борескова СО РАН
Приоритеты:
подача заявки:
2002-07-02
публикация патента:

Изобретение относится к способу получения высокопористых алюмосиликатных композитных материалов, обладающих высокой прочностью. Данные материалы могут быть использованы как адсорбенты, носители для катализаторов, а также в других областях применения пористых материалов. Способ приготовления композитного алюмосиликатного материала, состоящего из монтмориллонита и/или его натриевой формы и рентгеноаморфного термодиспергированного оксида алюминия, в котором в суспензию предварительно обработанного азотной кислотой гидратированного монтмориллонита и/или его натриевой формы вводят сухой термодиспергированный оксид алюминия, и после смешения полученную композицию подвергают совместной обработке азотной кислотой. Технический эффект - получение прочных высокопористых алюмосиликатных композиционных материалов. 4 з.п. ф-лы.

Формула изобретения

1. Способ приготовления композитного алюмосиликатного материала, включающий смешение суспензии предварительно гидратированного монтмориллонита и источника оксида алюминия, упаривание, формование, сушку и прокаливание, отличающийся тем, что в качестве источника оксида алюминия используют сухой рентгеноаморфный термодиспергированный оксид алюминия, который смешивают с суспензией гидратированного монтмориллонита и/или его натриевой формы, предварительно обработанной азотной кислотой, и после смешения полученную композицию подвергают совместной обработке азотной кислотой.

2. Способ по п.1, отличающийся тем, что весовое соотношение монтмориллонита и/или его натриевой формы к оксиду алюминия составляет 1:1-1:5.

3. Способ по пп.1 и 2, отличающийся тем, что весовое соотношение монтмориллонит и/или его натриевая форма : вода при гидратации составляет 1:10-1: 15.

4. Способ по пп.1-3, отличающийся тем, что мольное соотношение азотная кислота : оксид алюминия составляет 0,05-0,11.

5. Способ по пп.1-4, отличающийся тем, что обработку азотной кислотой проводят при температуре 50-80oС.

Описание изобретения к патенту

Изобретение относится к способу получения высокопористых алюмосиликатных композитных материалов, обладающих высокой прочностью. Данные материалы могут быть использованы как адсорбенты, носители для катализаторов, а также в других областях применения пористых материалов.

Известен способ приготовления пористых алюмосиликатных композиций на основе монтмориллонита и переосажденного гидроксида алюминия, заключающийся в смешении суспензии гидратированного монтмориллонита с суспензией переосажденного гидроксида алюминия с последующим упариванием композиции, экструзионной формовки композиции в гранулы, сушки и прокалки гранул [В.А. Дроздов, В. П. Доронин, Т.П. Сорокина, Т.И. Гуляева, В.К. Дуплякин, Текстурно-прочностные свойства композиции оксид алюминия - монтмориллонит, Кинетика и катализ, т.42, 1, с. 129-138 (2001 г.)].

Известный способ обладает следующими недостатками:

- используют переосажденный гидроксид алюминия, имеющий высокую стоимость;

- объем пор прокаленного получающегося композитного материала при соотношении монтмориллонит : оксид алюминия менее 1:6 составляет менее 0,5 см3/г, а при меньших содержаниях монтмориллонита экструдаты получаются недостаточно прочными.

Изобретение решает задачу создания прочных высокопористых алюмосиликатных композитных материалов.

Задача решается способом приготовления композитного алюмосиликатного материала, состоящего из монтмориллонита и/или его натриевой формы и рентгеноаморфного термодиспергированного оксида алюминия, в котором в суспензию предварительно гидратированного монтмориллонита и/или его натриевой формы вводят сухой термодиспергированный оксид алюминия при весовом соотношении монтмориллонит и/или его натриевая форма : оксид алюминия от 1:1 до 1:5, весовое соотношение монтмориллонит и/или его натриевая форма : вода при гидратации составляет от 1:10 до 1:15.

Монтмориллонит и/или его натриевую форму перед смешением с термодиспергированным оксидом алюминия подвергают обработке азотной кислотой.

Мольное соотношение азотная кислота : оксид алюминия составляет от 0,05 до 0,11, обработку азотной кислотой проводят при температуре 50-80oС.

Применение в качестве исходного источника оксида алюминия рентгеноаморфного термодиспергированного оксида алюминия позволяет существенно увеличить объем пор получающихся экструдатов. При этом он имеет низкую стоимость. Прочность экструдатов регулируют пептизацией монтмориллонита и композиции монтмориллонит -термодиспергированный оксид алюминия соответствующим количеством азотной кислоты.

Предлагаемый способ осуществляют следующим образом. Композицию готовят из двух компонентов - монтмориллонита (бентонитовая глина) и/или его натриевой формы и продукта термохимической активации глинозема - термодиспергированного рентгеноаморфного оксида алюминия.

Характеристика исходных компонентов:

Монтмориллонит:

В качестве компонента используют бентонитовую глину (13 и/или 14 горизонты) Таганского месторождения (республика Казахстан).

Бентонитовая глина представляет собой частицы неправильной формы размером от 1 до 40 см серо-коричневого цвета. Рентгенофазовый анализ показывает, что основной фазой является монтмориллонит, в качестве примеси присутствует кварц с содержанием менее 5 мас.%.

Химический состав глины в мас.% (в виде диапазонов возможных вариаций химического состава):

Na2O - 0,3-1,9

СаО - 0,8-2,0

MgO - 2,2-3,8

Al2O3 - 18-24

SiO2 - 64-76

Fe2О3 - 1,5-4,0

В следовых количествах присутствуют оксиды титана, марганца и других металлов. Потери при прокаливании при 800oС бентонитовой глины составляют от 15 до 30 мас.%, в том числе при сушке до 100oС от 8 до 15 мас.%.

Продукт термохимической активации глинозема - термодиспергированный оксид алюминия.

Продукт термохимической активации глинозема представляет собой белый порошок (возможен сероватый или кремовый оттенок) с размером частиц менее 40 мкм. Массовая доля потерь при прокаливаниии при температуре 800oС от 8 до 16 мас.% Содержание оксида натрия не более 0,4 мас.%.

Рентгенофазовый анализ показывает наличие аморфного гидроксида алюминия, непревращенного гиббсита с содержанием 3-8 мас.%, а также некоторое количество псевдобемита и оксида алюминия.

Химический состав, мас.%:

Na2O - 0,11-0,40

2О3 - 0,1-0,20

Al2O3 - Остальное

Монтмориллонит подвергают размолу. Затем монтмориллонит сушат на воздухе при температуре 110-130oС в течение 3-5 ч. Остаточная влажность полученной глины должна составлять от 8 до 15 мас.%

Монтмориллонит подвергают гидратации при весовом соотношении глина : вода, равном от 1:10 до 1:16. Полученная смесь представляет собой высокоподвижную суспензию. Температура гидратации комнатная. Время гидратации - не менее 6 ч. Гидратацию проводят 2 ч в покое, затем при перемешивании. Гидратированную суспензию глины подвергают активации азотной кислотой из расчета от 0,03 до 0,05 моля на моль оксида алюминия. Активацию глины проводят при температуре 60-70oС в течение не менее 3 ч при перемешивании. К активированной глине при перемешивании добавляют сухой порошок термодиспергированного оксида алюминия в весовом соотношении глина : оксид алюминия, равном от 1: 1 до 1: 5 в расчете на абсолютно сухие вещества (определяют по ППП при 800oС).

К композиции глина : термодиспергированный оксид алюминия при перемешивании добавляют азотную кислоту из расчета от 0,05 до 0,07 М на моль оксида алюминия и смесь подвергают совместной активации и пептизации при температуре 60-70oС в течение 3 ч при перемешивании.

Процесс упаривания суспензии проводят до остаточной влажности 45-55 мас. %. Смесь подвергают формованию в экструдаты.

Сушку экструдатов осуществляют в два этапа:

- провяливание на воздухе в течение 3 ч,

- сушка при температуре 100oС в течение 3 ч.

Предлагаемые условия приготовления пористого алюмосиликатного композитного материала обеспечивают получение материала с объемом пор, определяемым по влагоемкости, не менее 0,6 см3/г. Прочность на раздавливание по образующей не менее 1,2 кг/мм. Удельная поверхность по БЭТ полученного пористого композитного материала составляет 250-270 м3/г.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1. Характеризует известный способ приготовления композитного материала.

23 г монтмориллонита с влажностью 15 мас.% подвергают гидратации при весовом соотношении вода : монтмориллонит, равном 14:1, при этом получают 280 мл суспензии. Температура гидратации комнатная, время гидратации 6 ч. К суспензии монтмориллонита добавляют 300 мл суспензии переосажденной гидроокиси алюминия, содержащей 80 г оксида алюминия (в пересчете на абсолютно сухое вещество). Смесь суспензий 580 мл, содержащая 100 г сухого вещества, подвергают упариванию при температуре 90oС до остаточной влажности 55 мас.%. Смесь формуют в экструдаты. Экструдаты провяливают на воздухе 3 ч и сушат в сушильном шкафу 3 ч при температуре 100oС. Прокалку экструдатов проводят в муфеле при 500oС в течение 3 ч.

Объем пор полученных экструдатов составляет 0,41 см3/г. Прочность на раздавливание 1,1 кг/мм.

Примеры 2-7 иллюстрируют предлагаемый способ.

Пример 2. 23 г монтмориллонита с влажностью 15 мас.% подвергают гидратации при весовом соотношении вода : монтмориллонит, равном 15:1, при этом получают 300 мл суспензии. Температура гидратации комнатная, время гидратации 6 ч. К суспензии монтмориллонита добавляют при перемешивании 23 мл 6,5% азотной кислоты (0,03 моля кислоты на моль оксида алюминия). Температуру суспензии поднимают до 60oС и суспензию выдерживают при данной температуре в течение 3 ч. К 325 мл суспензии активированного монтмориллонита при перемешивании добавляют 80 г термодиспергированного оксида алюминия. Таким образом, весовое соотношение монтмориллонит : термодиспергированный оксид алюминия составляет 1:4. В полученную композицию для пептизации вводят 5,4 мл 65% азотной кислоты (0,07 моля кислоты на моль оксида алюминия) и полученную композиция выдерживают при температуре 60oС в течение 3 ч. Смесь, содержащую 100 г сухого вещества, подвергают упариванию при температуре 80oС до остаточной влажности 50 мас.%. Смесь формуют в экструдаты. Экструдаты провяливают на воздухе 3 ч и сушат в сушильном шкафу 3 ч при температуре 100oС. Прокалку экструдатов проводят в муфеле при 500oС в течение 3 ч. Объем пор полученных экструдатов составляет 0,65 см3/г. Прочность на раздавливание 1,7 кг/мм.

Пример 3. Приготовление композиции проводят, как в примере 2. Отличие заключается в изменении соотношения монтмориллонит : термодиспергированный оксид алюминия до уровня 1:1. Объем пор полученных прокаленных экструдатов составляет 0,51 см3/г. Прочность полученных прокаленных экструдатов составляет 2,8 кг/мм. Таким образом, при малых соотношениях монтмориллонит : термодиспергированный оксид алюминия получаются высокопрочные экструдаты с меньшим объемом пор.

Пример 4. Приготовление композиции проводят, как в примере 2. Отличие заключается в изменении соотношения монтмориллонит : термодиспергированный оксид алюминия до уровня 1:5. Объем пор полученных прокаленных экструдатов составляет 0,68 см3/г. Прочность полученных прокаленных экструдатов составляет 1,2 кг/мм. Таким образом, при высоких соотношениях монтмориллонит : термодиспергированный оксид алюминия не удается получить высокопрочный композитный материал.

Пример 5. Приготовление композиции проводят, как в примере 2. Отличие заключается в изменении мольного соотношения азотная кислота : оксид алюминия на стадии пептизации композиции до уровня 0,08 моля кислоты на моль оксида алюминия. Объем пор полученных прокаленных экструдатов составляет 0,56 см3/г. Прочность полученных прокаленных экструдатов составляет 2,8 кг/мм. Таким образом, при высоких мольных соотношениях азотная кислота : оксид алюминия не удается получить высокопористый композитный материал.

Пример 6. Приготовление композиции проводят, как в примере 5. Отличие заключается в изменении мольного соотношения азотная кислота : оксид алюминия на стадии пептизации композиции до уровня 0,05 моля кислоты на моль оксида алюминия. Объем пор полученных прокаленных экструдатов составляет 0,71 см3/г. Прочность полученных прокаленных экструдатов составляет 0,8 кг/мм. Таким образом, при низких мольных соотношениях азотная кислота : оксид алюминия не удается получить высокопрочный композитный материал.

Пример 7. Приготовление композиции проводят, как в примере 2. Отличие заключается в применении натриевой формы монтмориллонита. Объем пор полученных прокаленных экструдатов составляет 0,72 см3/г. Прочность полученных прокаленных экструдатов составляет 1,8 кг/мм. Таким образом, применение натриевой формы монтмориллонита также обеспечивает получение высокопористого и прочного композитного материала.

Как видно из приведенных примеров, предлагаемый способ позволяет получать прочные высокопористые алюмосиликатные композитные материалы, которые могут найти широкое применение как адсорбенты, носители катализаторов, а также в других областях применения пористых материалов.

Класс B01J21/04 оксид алюминия

способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ получения ультранизкосернистых дизельных фракций -  патент 2528986 (20.09.2014)
катализатор получения элементной серы по процессу клауса, способ его приготовления и способ проведения процесса клауса -  патент 2527259 (27.08.2014)
способ конверсии оксидов углерода -  патент 2524951 (10.08.2014)
катализатор на подложке из оксида алюминия, с оболочкой из диоксида кремния -  патент 2520223 (20.06.2014)
катализатор и способ синтеза олефинов из диметилового эфира в его присутствии -  патент 2518091 (10.06.2014)
шариковый катализатор крекинга "адамант" и способ его приготовления -  патент 2517171 (27.05.2014)
способ производства метанола, диметилового эфира и низкоуглеродистых олефинов из синтез-газа -  патент 2516702 (20.05.2014)
способ получения наноструктурных каталитических покрытий на керамических носителях для нейтрализации отработавших газов двигателей внутреннего сгорания -  патент 2515727 (20.05.2014)
катализатор для избирательного окисления монооксида углерода в смеси с аммиаком и способ его получения (варианты) -  патент 2515529 (10.05.2014)

Класс B01J21/12 диоксид кремния и оксид алюминия

носители катализатора на основе силикагеля -  патент 2522595 (20.07.2014)
объединенный способ каталитичеcкого крекинга в псевдоожиженном слое катализатора для получения высококачественных углеводородных смесей в качестве топлива -  патент 2518119 (10.06.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
катализатор для получения бутадиена превращением этанола -  патент 2514425 (27.04.2014)
катализатор окисления для оснащенных дизельным двигателем транспортных средств для перевозки пассажиров, грузов и для нетранспортных работ -  патент 2489206 (10.08.2013)
комплексный способ крекинга с псевдоожиженным катализатором для получения смесей углеводородов, обладающих высоким топливным качеством -  патент 2481388 (10.05.2013)
катализаторы гидрирования со связующими, имеющими низкую площадь поверхности -  патент 2480279 (27.04.2013)
катализатор синтеза фишера-тропша, способ его приготовления и применения -  патент 2478006 (27.03.2013)
катализатор синтеза фишера-тропша, его изготовление и применение -  патент 2477654 (20.03.2013)
катализатор, способ его приготовления и способ получения -пиколина -  патент 2474473 (10.02.2013)

Класс B01J21/16 глины или прочие минеральные силикаты

катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
шариковый катализатор крекинга "адамант" и способ его приготовления -  патент 2517171 (27.05.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
содержащие вольфрамовые соединения катализаторы и способ дегидратации глицерина -  патент 2487754 (20.07.2013)
способ регенерации катализатора, используемого при дегидратации глицерина -  патент 2484895 (20.06.2013)
микросферический катализатор для крекинга нефтяных фракций и способ его приготовления -  патент 2473385 (27.01.2013)
микросферический бицеолитный катализатор для повышения октанового числа бензина крекинга вакуумного газойля и способ его приготовления -  патент 2473384 (27.01.2013)
микросферический катализатор для снижения содержания серы в бензине крекинга и способ его приготовления -  патент 2472586 (20.01.2013)
способ переработки бензинов термических процессов и катализатор для его осуществления -  патент 2469070 (10.12.2012)
способ приготовления блочных сотовых кордиеритовых катализаторов очистки отработавших газов двигателей внутреннего сгорания -  патент 2442651 (20.02.2012)

Класс B01J32/00 Носители катализаторов вообще

состав шихты для высокопористого керамического материала с сетчато-ячеистой структурой -  патент 2525396 (10.08.2014)
фольга из нержавеющей стали и носитель катализатора для устройства очистки выхлопного газа, использующий эту фольгу -  патент 2518873 (10.06.2014)
способ получения нитрата металла на подложке -  патент 2516467 (20.05.2014)
носитель электрокатализатора для низкотемпературных спиртовых топливных элементов -  патент 2504051 (10.01.2014)
носитель, содержащий муллит, для катализаторов для получения этиленоксида -  патент 2495715 (20.10.2013)
способ получения дизельного топлива из твердых синтетических углеводородов, полученных по методу фишера-тропша, и катализатор для его осуществления -  патент 2493237 (20.09.2013)
геометрически классифицированный, имеющий определенную форму твердый носитель для катализатора эпоксидирования олефина -  патент 2492925 (20.09.2013)
способ изготовления текстильного катализатора (варианты) -  патент 2490065 (20.08.2013)
элемент каталитической насадки (варианты) и способ осуществления экзотермических каталитических реакций -  патент 2489210 (10.08.2013)
способ получения углеродного носителя для катализаторов -  патент 2484899 (20.06.2013)
Наверх