способ определения положения ротора в электрических машинах с двойной зубчатостью

Классы МПК:H02P6/16 устройства для определения положения
G01P3/44 для измерения угловой скорости
G01P3/46 путем измерения амплитуды генерируемого тока или напряжения 
Автор(ы):, ,
Патентообладатель(и):Новоуральский политехнический институт
Приоритеты:
подача заявки:
2000-03-10
публикация патента:

Изобретение относится к области электротехники, а именно к устройствам управления синхронными машинами с электронными коммутаторами. Технический результат изобретения, заключающийся в повышении точности определения положения ротора, достигается путем того, что в способе определения положения ротора в электрических машинах с двойной зубчатостью по измеряемым фазным токам и напряжениям, положение ротора находят одновременно по всем фазам с учетом весовых коэффициентов через магнитную проводимость воздушного зазора между зубцами полюсов статора и зубцами ротора по кривым аппроксимации магнитной проводимости в зависимости от угла между зубцами полюсов статора и зубцами ротора, при этом весовые коэффициенты фаз, работающих на участках с малым изменением магнитной проводимости зазора между зубцами ротора, приравниваются к нулю, а для других выбираются пропорционально величине тока фазы, сумма весовых коэффициентов равна единице. 1 з. п. ф-лы, 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

1. Способ определения положения ротора в электрических машинах с двойной зубчатостью по измеряемым фазным токам и напряжениям, отличающийся тем, что положение ротора находят одновременно по всем фазам с учетом весовых коэффициентов через магнитную проводимость воздушного зазора между зубцами полюсов статора и зубцами ротора по кривым аппроксимации магнитной проводимости в зависимости от угла между зубцами полюсов статора и зубцами ротора, при этом весовые коэффициенты фаз, работающих на участках с малым изменением магнитной проводимости зазора между зубцами ротора, приравниваются к нулю, а для других выбираются пропорционально величине тока фазы, сумма весовых коэффициентов рана единице.

2. Способ по п.1, отличающийся тем, что весовые коэффициенты для фаз, работающих в области линейной зависимости потокосцепления от тока и линейной зависимости магнитной проводимости между зубцами ротора и статора от угла между ними, выбираются большими, чем для фаз, работающих в нелинейных областях изменения потокосцепления и магнитной проводимости, и сумма весовых коэффициентов равна единице.

Описание изобретения к патенту

Изобретение относится к области управления синхронными электрическими машинами с электронными коммутаторами в зависимости от положения ротора.

Известен способ измерения углового положения ротора по всем фазным токам и напряжению питания для синхронного двигателя [1], заключающийся в том, что по уравнениям модели двигателя из всех фазных токов и напряжения питания определяют ЭДС, наводимую полем ротора в статорных обмотках. Далее по известному вектору ЭДС вычисляют текущее положение ротора и скорость его вращения.

Недостатками такого способа являются низкая точность при малых скоростях вращения, вследствие уменьшения ЭДС, наводимой ротором в статорных обмотках, и невозможности определения положения ротора при нулевой скорости вращения. При этом алгоритм определения ЭДС по фазным токам и напряжению питания достаточно сложен, т. к. требует решения нескольких дифференциальных (или разностных) уравнений с прогнозируемыми значениями токов для следующего момента времени.

Предлагаемый способ определения скорости вращения и положения ротора в электрических машинах с двойной зубчатостью позволяет определять скорость вращения и угловое положение ротора при любых скоростях вращения без потери точности и требует решения только одного дифференциального уравнения.

Для пояснения способа определения скорости вращения и положения ротора в электрических машинах с двойной зубчатостью приведены три чертежа. На фиг.1 изображена одна из типичных схем электрической машины с двойной зубчатостью. На фиг. 2 изображены кривые намагничивания в координатах потокоспепления и тока фазы. На фиг. 3 изображена кривая зависимости магнитной проводимости воздушного зазора от угла между зубцами полюса статора и зубцами ротора.

Для определения углового положение ротора вычисляют магнитную проводимость воздушного зазора между зубцами полюса статора и зубцами ротора. С этой целью по измеренным фазным токам и напряжению питания определяют потокосцепление для каждой фазы:

способ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 2217859

где способ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 2217859, I, U, R - потокосцепление, ток, напряжение и активное сопротивление фазы соответственно.

Далее по аппроксимации кривых намагничивания находят магнитную проводимость воздушного зазора между зубцами полюса статора и зубцами ротора способ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 2217859, см, фиг.2.

По известной магнитной проводимости воздушного зазора способ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 2217859 и аппроксимации ее зависимости от угла между зубцами фиг.3 определяют модуль угла положения зубцов ротора по отношению к зубцам статора |способ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 2217859способ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 2217859|.

Сравнивая магнитную проводимость воздушного зазора текущей рассчитываемой фазы и соседней, определяют знак угла положения зубцов ротора по отношению к зубцам статора способ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 2217859способ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 2217859 и рассчитывают положение ротора способ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 2217859 по отношению к начальному (нулевому) углу, исходя из геометрии машины.

Определив значение угла по каждой фазе, итоговый результат вычисляют по формуле:

способ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 2217859 = k1способ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 2217859способ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 22178591+k2способ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 2217859способ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 22178592+...+knспособ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 2217859способ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 2217859n,

где n - количество фаз, способ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 2217859i - угловое положение ротора, определенное по i-й фазе, ki - весовые коэффициенты, сумма которых равна единице.

Введение весовых коэффициентов, позволяет контролировать положение ротора в каждый момент времени, несмотря на то, что при измерении по отдельно взятой фазе существуют зоны нечувствительности, в которых определение углового положения невозможно, вследствие малого изменения магнитной проводимости возданного зазора от угла между зубцами.

Весовые коэффициенты для фаз, работающих в данный момент на участках с малым изменением магнитной проводимости воздушного зазора между зубцами ротора и статора, приравниваются нулю. По остальным фазам суммируют токи, и весовые коэффициенты выбирают пропорционально отношению фазного тока к полученному суммарному. Такой алгоритм вычисления весовых коэффициентов позволяет исключать из рассмотрения фазы, в которых отсутствует ток или данные, от которых недостоверны.

Для повышения точности определения углового положения ротора, которая зависит от точности аппроксимации кривых намагничивания и магнитной проводимости фиг. 2 и 3, ее целесообразно проводить только на участках линейной зависимости потокосцепления от тока и линейной зависимости магнитной проводимости от угла между зубцами ротора и статора. Для этого весовые коэффициенты фаз, работающих на этих участках, выбираются во много раз большими, чем весовые коэффициенты для фаз, работающих в нелинейных областях.

Т.к. питание фазных обмоток машин рассматриваемого класса является дискретным, и в реальных условиях ток практически во всех режимах присутствует только в активной фазе (фаза, подключенная к источнику питания и создающая на данном этапе основную часть механического момента электрической машины) и в предыдущей отключаемой фазе, то для сокращения объемов вычислений определение углового положения ротора можно вести только по этим двум фазам.

Ошибку от вычисления потокосцепления сбрасывают, приравнивая потокосцепление фазы способ определения положения ротора в электрических машинах   с двойной зубчатостью, патент № 2217859 нулю при равенстве тока фазы I нулю.

Скорость вращения ротора определяют по изменению угла с использованием алгоритмов статистической обработки измерений.

Предлагаемый способ определения скорости вращения и положения ротора в электрических машинах с двойной зубчатостью применим только для синхронных электрических машин с зубцами на роторе и на статоре (вентильно-индукторные, шаговые и т.п.) фиг.1. Техническая реализация данного способа легко осуществима па базе современных микроконтроллеров.

Источники информации

1. Д. Б. Изосимов "Синтез алгоритмов цифрового управления синхронным электроприводом без датчика на валу двигателя".// "Электричество", 9, 1998 г., с. 26-32.

Класс H02P6/16 устройства для определения положения

частотно-фазовая система регулирования скорости вращения электродвигателя -  патент 2510126 (20.03.2014)
шестифазный вентильно-индукторный двигатель с минимальными шумами, вибрациями и пульсациями момента, способ и устройство управления -  патент 2483416 (27.05.2013)
трехфазный высокоскоростной вентильно-индукторный двигатель с минимальными шумами, вибрациями и пульсациями момента, способ и устройство управления -  патент 2482591 (20.05.2013)
трехфазный вентильно-индукторный двигатель с минимальными шумами, вибрациями и пульсациями момента, способ и устройство управления -  патент 2482590 (20.05.2013)
система управления электромагнитным подвесом ротора -  патент 2460909 (10.09.2012)
способ управления вентильным двигателем и следящая система для его осуществления -  патент 2455748 (10.07.2012)
привод устройства регулирования напряжения силового трансформатора под нагрузкой -  патент 2444046 (27.02.2012)
способ обеспечения живучести трехфазного вентильного двигателя на основе явнополюсной синхронной машины -  патент 2435291 (27.11.2011)
бесконтактный электродвигатель постоянного тока -  патент 2420851 (10.06.2011)
бесконтактный электродвигатель постоянного тока -  патент 2408127 (27.12.2010)

Класс G01P3/44 для измерения угловой скорости

Класс G01P3/46 путем измерения амплитуды генерируемого тока или напряжения 

Наверх