способ измерения концентрации вещества в растворе

Классы МПК:G01N21/35 с использованием инфракрасного излучения
G01N21/17 системы, в которых на падающий свет влияют свойства исследуемого материала
Автор(ы):,
Патентообладатель(и):Мухамедяров Роберт Давлетович (RU),
Харисов Рауил Ибрагимович (RU)
Приоритеты:
подача заявки:
2002-11-20
публикация патента:

Способ относится к оптике и используется источник модулированного излучения, делитель света, кювета, два фотоприемных блока с демодуляторами, блок вычислений и блок индикации. Технический результат - точное измерение концентрации вещества в растворе. 1 ил., 1 табл.

способ измерения концентрации вещества в растворе, патент № 2243539

способ измерения концентрации вещества в растворе, патент № 2243539

Формула изобретения

Способ измерения концентрации вещества в растворе, включающий использование источника модулированного инфракрасного излучения, делителя света, формирующего два луча, и расположенных по ходу лучей двух фотоприемных блоков с демодуляторами, блока вычислений и блока индикации, отличающийся тем, что используют кювету, введенную между делителем света и двумя фотоприемными блоками, при этом часть кюветы, через которую проходит первый луч, имеет длину d1, а часть кюветы, через которую проходит второй луч, имеет длину d2, d2>d1, в блоке вычислений производят вычисления по соотношению W=(1-с1·t)/(с2+с3·t), где t=(U2·V1)/(U1·V2), U1, U2 - напряжения на выходе фотоприемных блоков при наличии кюветы с образцом, V1, V2 - напряжения на выходах фотоприемных блоков при отсутствии кюветы с образцом, с1, с2, с3 - параметры, подобранные таким образом, что W=C, где С - концентрация поглощающего вещества, вычисление которых реализуют по эталонам, при этом значение концентрации поглощающего вещества индуцируется в блоке индикации.

Описание изобретения к патенту

Изобретение относится к технической физике и может использоваться, например, для контроля концентрации воды в пищевой промышленности и чистоты питьевой воды.

Известно устройство (а.с. №1492245, кл. G 01 N 21-27, 07.07.98 г.), содержащее блок управления, соединенный с ИК-излучателями информационного и опорного каналов, соответственно излучение которых через контролируемый материал поступает на приемник ИК-излучения, выход которого через усилитель соединен со входом детектора превышения нулевого уровня, а его выход через инвертор связан с первым входом сумматора, второй вход которого соединен с выходом усилителя. Выход сумматора через инвертирующий усилитель соединен с первыми входами блоков выборки-хранения информационного и опорного сигналов соответственно. Выход усилителя связан с первым входом блока выборки-хранения фонового сигнала. Вторые входы блоков выборки-хранения информационного, опорного и фонового сигналов связаны с соответствующими выходами блока управления. Выход блока выборки-хранения фонового сигнала связан с первыми входами блоков вычитания, а их вторые входы соединены с выходами блоков выборки-хранения информационного и опорного сигналов. Выходы блоков вычитания связаны с блоком вычисления и регистрации влажности.

Недостатками рассматриваемого устройства являются сложность его реализации и низкая точность измерения влажности.

Известно устройство (а.с. №1589164, кл. G 01 N 21/81, 30.08.90 г.), выбранное в качестве прототипа, содержащее расположенные последовательно и оптически связанные источник света, оптический прерыватель, светоделительные зеркала, выделяющие два оптических канал, светофильтры в каждом канале и блоки фотоприемного усиления, выходы которых в каждом канале электрически соединены с блоками усиления сигналов, выходы которых подключены к блоку деления сигналов, выход которого подключен к блоку масштабирования, соединенного с блоком индикации, имитатор нулевой влажности, снабженный приводом для ввода его между источником света и оптическим прерывателем, блок сравнения, блок эталонного напряжения, соединенный с блоком сравнения, блок управления, блоки делителей с переменным коэффициентом деления по одному в каждом канале и шесть ключей, причем входы первого и второго ключей соединены соответственно с выходами первого и второго блоков делителей, выходы этих ключей соединены со входами первого и второго блоков усиления сигналов, входы третьего и четвертого ключей соединены соответственно с выходами первого и второго блоков делителей, а выходы этих ключей подключены к первому и второму входам блока сравнения, входы пятого и шестого ключей соединены соответственно с первым и вторым выходами блока сравнения, а выходы этих ключей подключены к отстраивающим входам первого и второго блоков делителей, при этом сигнальные входы последних соединены в каждом канале с выходами блоков фотоприемного усиления, а выходы блока управления разделены так, что первый из них соединен с приводом имитатора нулевой влажности, второй - с управляющими входами четвертого и шестого ключей, третий - с вправляющими входами третьего и пятого ключей, четвертый - с управляющими входами первого и второго ключей.

Недостатками рассматриваемого устройства являются сложность его реализации и сложная функциональная зависимость выходной функции от измеряемого параметра.

Задача изобретения состоит в получении точного значения концентрации воды в растворе.

Решение поставленной задачи достигается тем, что в способ измерения концентрации вещества в растворе, включающем использование источника модулированного инфракрасного излучения, делителя света, формирующего два луча, и расположенных по ходу лучей двух фотоприемных блоков с демодуляторами, блока вычислений и блока индикации, используют кювету, введенную между делителем света и двумя фотоприемными блоками, при этом часть кюветы, через которую проходит первый луч, имеет длину d 1, а часть кюветы, через которую проходит второй луч, имеет длину d2, d2>d1, в блоке вычисления осуществляется по соотношению способ измерения концентрации вещества в растворе, патент № 2243539 где способ измерения концентрации вещества в растворе, патент № 2243539 U1, U2 - напряжения на выходах фотоприемных блоков при наличии кюветы с образцом, v1, V2 - напряжения на выходах фотоприемных блоков при отсутствии кюветы с образцом, c1, с2, с3 - параметры, вычисление которых реализуется по эталонам и подобранные таким образом, что W=C, где С - концентрация поглощающего вещества, при этом значение концентрации поглощающего вещества индуцируется в блоке индикации.

В способе измерения концентрации вещества в растворе (чертеж) используются источник модулированного излучения 1, делитель света на два луча 2 и расположенные по ходу излучения, кювета 3, два фотоприемных блока с демодуляторами 4.1, 4.2, блок вычислений 5, выходом соединенный с блоком индикации 6.

Способ измерения концентрации воды (см. чертеж) работает следующим образом. Модулированное излучение от источника 1 (лазер) поступает на светоделитель 2, который формирует два параллельных пучка, далее оба луча проходят исследуемый материал, который находится в кювете 3.1, при этом часть кюветы, через которую проходит первый луч, имеет длину d1, а часть кюветы, через которую проходит второй луч, имеет длину d2, d2 >d1, затем излучения попадают на блоки фотоприемников с демодуляторами 4.1, 4.2, в которых сигналы преобразуются в электрические импульсы. Напряжения на выходах блоков 4.1 и 4.2 при наличии кюветы с образцом в соответствии с обобщенным законом Бугера способ измерения концентрации вещества в растворе, патент № 2243539 способ измерения концентрации вещества в растворе, патент № 2243539 а при отсутствии кюветы напряжения на выходах блоков 4.1 и 4.2 будут соответственно V1=F1· ky1· kpr1v, V2 =F2· ky2· kpr2v, где F1, F2 - интенсивности лучей света после светоделителя, С - концентрация поглощающего вещества, А - коэффициент, не зависящий от концентрации и характерный для молекулы поглощающего вещества, связанный с коэффициентом поглощения способ измерения концентрации вещества в растворе, патент № 2243539 =А· С, k1, k2 - коэффициенты ослабления интенсивности светового потока стеклянными стенками кюветы, k y1, ky2 - коэффициенты усиления усилителей фотоприемников, kpr1, kpr2, kpr1v , kpr2v - зонные чувствительности фотоприемников.

Полученное значение напряжения с блоков 4.1,4.2 поступают на блок вычислений 5, где производятся вычисления по соотношениям способ измерения концентрации вещества в растворе, патент № 2243539 где способ измерения концентрации вещества в растворе, патент № 2243539 а c1, с2, с3 - параметры, подобранные таким образом, что W=C. Существование таких параметров можно показать на следующем примере для водного раствора спирта. При способ измерения концентрации вещества в растворе, патент № 2243539 =1,0 мкм, d1=1,0 см, d2=2,0 см, А=0,24 см-1. Значение t после элементарных преобразований способ измерения концентрации вещества в растворе, патент № 2243539 При хорошей юстировке величина способ измерения концентрации вещества в растворе, патент № 2243539 должна быть равна единице, а в худшем случае она есть константа. Если z=1,0, то с1=0,999945, c2=0,113197, с3=0,127471, то погрешность вычисления влажности согласно приведенной ниже таблицы составляет менее 0,026%.

способ измерения концентрации вещества в растворе, патент № 2243539

В том случае когда z отлично от единицы, то нужно подкорректировать c1, c3. Вычисление параметров c1 , c2, c3 можно реализовать по эталонам.

Значение концентрации поглощающего вещества индуцируется в блоке индикации 6.

Таким образом можно точно определить концентрацию воды в растворе.

Класс G01N21/35 с использованием инфракрасного излучения

способ определения палеотемператур катагенеза безвитринитовых отложений по оптическим характеристикам микрофитофоссилий -  патент 2529650 (27.09.2014)
способ измерения прочности льняной тресты -  патент 2525598 (20.08.2014)
светоизлучающий модуль -  патент 2516032 (20.05.2014)
система визуализации для получения комбинированного изображения из полноцветного изображения в отраженном свете и изображение в ближней инфракрасной области -  патент 2510235 (27.03.2014)
анализ субстратов, на которые нанесены агенты -  патент 2505798 (27.01.2014)
способ прогнозирования устойчивости технологического потока углеводородов с использованием ближних инфракрасных спектров -  патент 2502984 (27.12.2013)
способ оптического обнаружения и устройство для оптического обнаружения состояния суставов -  патент 2501515 (20.12.2013)
система и способ анализа процесса алкилирования -  патент 2498274 (10.11.2013)
система и способ онлайнового анализа и сортировки свойств свертывания молока -  патент 2497110 (27.10.2013)
ик-спектроскопический экспресс-способ определения качества лекарственного растительного сырья -  патент 2493555 (20.09.2013)

Класс G01N21/17 системы, в которых на падающий свет влияют свойства исследуемого материала

способ определения мольной доли li2o в монокристаллах linbo3 -  патент 2529668 (27.09.2014)
устройство для анализа биологической жидкости -  патент 2500999 (10.12.2013)
способ определения количества присадки "меркаптобензотиазол" в маслах для авиационной техники -  патент 2489716 (10.08.2013)
микроэлектронное сенсорное устройство сенсора для детектирования целевых частиц -  патент 2489704 (10.08.2013)
устройство обработки изображений, способ обработки изображений, устройство захвата томограммы, программа и носитель для записи программы -  патент 2481056 (10.05.2013)
способ определения давности выполнения рукописных текстов и других материалов письма -  патент 2480736 (27.04.2013)
устройство для исследования распространения поверхностных электромагнитных волн (пэв) и средство для исследования влияния тонких пленок и микрообъектов на их распространение -  патент 2480735 (27.04.2013)
комбинированная система фотоакустического и ультразвукового формирования изображений -  патент 2480147 (27.04.2013)
фотоакустическое измерительное устройство -  патент 2475181 (20.02.2013)
количественный анализ тиомочевины и флуоресцеина натрия при их совместном присутствии в пластовых водах -  патент 2473885 (27.01.2013)
Наверх