способ извлечения соединений металлов при термической переработке металлсодержащего сырья

Классы МПК:C22B7/00 Переработка сырья, кроме руды, например скрапа, с целью получения цветных металлов или их соединений
C22B34/34 получение молибдена
Автор(ы):, , , , , ,
Патентообладатель(и):Институт проблем химической физики Российской академии наук (ИПХФ РАН) (RU)
Приоритеты:
подача заявки:
2004-08-05
публикация патента:

Изобретение относится к способу переработки руд, концентратов, отвальных кеков металлургической переработки природного и техногенного сырья, а также углеводородных металлсодержащих композитов (например, кожи, резины и т.п.) путем извлечения металлов в летучие соединения при термической обработке в режиме сверхадиабатического фильтрационного горения. В таком режиме можно достигать высоких температур горения в узкой реакционной зоне, чего невозможно достигнуть в режиме обычного горения. Шихту, представляющую собой механическую смесь твердых компонентов, в том числе металлсодержащего сырья, твердого горючего и инертного негорящего наполнителя, загружают в реактор, в котором в противотоке газообразного окислителя, например воздуха, сквозь материал загрузки организован нагрев шихты в режиме фильтрационного горения с последовательным пребыванием загруженной шихты в зонах нагревания, возгонки летучих соединений, горения (окисления) и конденсации летучих. Массовое отношение расхода газообразного окислителя к расходу твердого горючего шихты, загружаемой в реактор, и скорость потока газообразного окислителя регулируют таким образом, чтобы максимальная температура в зоне горения достигала предписанного значения, находящегося в пределах 850-1500°С. Применение способа позволяет с высоким выходом и низкими энергозатратами извлекать некоторые металлы, например молибден, вольфрам, цинк или их соединения из различных видов техногенного сырья и бедных руд. 4 з.п. ф-лы, 1 табл.

Формула изобретения

1. Способ извлечения соединений металлов из твердого металлсодержащего сырья, включающий получение шихты, содержащей твердый горючий компонент и проницаемой для газообразного окислителя, нагрев шихты до температуры окисления, проведение процесса горения, возгонку легколетучих металлсодержащих компонентов, последующую конденсацию возгона и извлечение целевого продукта, отличающийся тем, что долю твердого горючего компонента в шихте поддерживают в пределах от 3 до 15 мас.%, процесс проводят в режиме фильтрационного горения путем продувки газообразного окислителя через слой шихты, прошедшей высокотемпературную обработку, и выведения из реактора газообразных продуктов горения через слой загруженной в реактор свежей шихты.

2. Способ по п.1, отличающийся тем, что в качестве твердого горючего используются уголь, кокс, торф, древесина, иные твердые углеродсодержащие материалы, металлсодержащие горючие соединения.

3. Способ по п.1, отличающийся тем, что в состав газообразного окислителя вводят пары воды.

4. Способ по п.1, отличающийся тем, что целевой продукт извлекают из части шихты, обогащенной в процессе горения и в которой сконденсировались возгоны металлов или их соединений.

5. Способ по п.1, отличающийся тем, что целевой продукт извлекают в виде возгонов металлов или их соединений из потока газа, выводимого из реактора, в барботажном скруббере.

Описание изобретения к патенту

Изобретение относится к способу переработки руд, концентратов, отвальных кеков металлургической переработки природного и техногенного сырья, а также углеводородных металлсодержащих композитов (например, кожи, резины и т. п.) путем извлечения металлов в летучие соединения при термической обработке. Сущность изобретения: шихту, представляющую собой механическую смесь твердых компонентов, в том числе: металлсодержащего сырья, твердого горючего и инертного негорящего наполнителя, загружают в реактор, в котором в противотоке газообразного окислителя, например воздуха, сквозь материал загрузки организован нагрев шихты в режиме фильтрационного горения с последовательным пребыванием загруженной шихты в зонах нагревания, возгонки летучих соединений, горения (окисления) и конденсации летучих. Массовое отношение расхода газообразного окислителя к расходу твердого горючего шихты, загружаемой в реактор, и скорость потока газообразного окислителя регулируются таким образом, чтобы максимальная температура в зоне горения достигала предписанного значения, находящегося в пределах 850-1500°С.

Извлечение металлов (в особенности редких металлов) и их соединений из металлсодержащего сырья путем их окислительной переработки является широко распространенным способом, но представляет собой достаточно сложный, многостадийный процесс (см. патенты US 6149883, US 2003086864). Сложность в известных технологических способах извлечения целевых продуктов возгонкой, в частности окислительный обжиг в печах, заключается (см. патенты US 4523948, RU 2106420, RU 2191840) в необходимости создания достаточно жестких температурных режимов, предотвращения спекания шихты. С другой стороны, для этих способов характерна неполнота извлечения целевого продукта и необходимость его доизвлечения, чаще всего гидрометаллургическими способами (см. патент US 4551312). Кроме того, эти технологические способы связаны с большими энергетическими затратами (например, обжиговые печи, электропечи).

Наиболее близким к заявляемому техническому решению является способ переработки бытовых отходов, описанный в патенте RU 2079051 (БИ №13, 1997), согласно которому шихту, включающую твердые бытовые отходы, содержащую горючие компоненты, в смеси с твердым негорючим материалом, пиролизуют в реакторе с последующим горением (газификацией углеродистых остатков пиролиза шихты) в режиме противотока газообразного окислителя. При этом температуру в зоне горения поддерживают в пределах 700-1400°С, а неконденсирующиеся на выходе из реактора газы, имеющие высокую теплотворную способность, используются как топливо.

Техническим результатом изобретения является увеличение степени извлечения целевого продукта в процессе переработки металлсодержащей шихты с высокой энергетической эффективностью и без использования внешних источников тепла.

Технический результат достигается способом извлечения соединений металлов из твердого металлсодержащего сырья, включающим получение шихты, содержащей твердый горючий компонент и проницаемой для газообразного окислителя, нагрев шихты до температуры окисления, подачу газообразного окислителя, проведение процесса горения, возгонку легколетучих металлсодержащих компонентов, последующую конденсацию возгона и извлечение целевого продукта, согласно изобретению долю твердого горючего компонента в шихте поддерживают в пределах от 3 до 15 мас.%, процесс проводят в режиме фильтрационного горения путем продувки газообразного окислителя через слой шихты, прошедшей высокотемпературную обработку, и выведения из реактора газообразных продуктов горения через слой загруженной в реактор свежей шихты.

В общем случае термическая обработка шихты организована таким образом, что по мере протекания газа сквозь загруженную массу шихты последовательно в направлении газового потока окислителя сквозь материал загрузки осуществляются следующие основные процессы, связанные с формированием следующих зон: нагревания, испарения летучих металлсодержащих соединений, содержащихся в исходной шихте, горения (окисления), конденсации металлсодержащих соединений за зоной горения и охлаждения. Зона испарения может быть шире зоны горения, так как в процессе горения могут одновременно происходить и испарение летучих металлсодержащих соединений как из исходной шихты, так и из продуктов горения. Эти зоны продвигаются в ходе процесса через слой шихты в направлении потока газа вплоть до выхода из массы шихты и конденсации целевого продукта вне массы шихты.

Приводимая здесь классификация зон достаточно условна. Эти зоны можно было бы определить иначе, например, исходя из температуры в шихте, из состава реагентов и т.п. Однако при любом выборе обозначений благодаря противоточному перемещению газового потока и загрузки шихты, сохраняется общая черта, заключающаяся в том, что газообразный окислитель предварительно нагревается за счет теплообмена с твердым остатком горения, а затем горячие газообразные продукты горения отдают свое тепло непрореагировавшей шихте.

В качестве газообразного окислителя используется кислород, воздух и их смеси с кислородом, дымовые кислородсодержащие газы (преимущественно в смеси с воздухом). При этом массовая доля газообразного окислителя "aox ", массовая доля негорючего материала шихты "в u/f" и массовая доля горючего материала шихты "с f" выбираются таким образом, чтобы выполнялось соотношение 0,2способ извлечения соединений металлов при термической переработке   металлсодержащего сырья, патент № 2278175 aoxвu/f/cfспособ извлечения соединений металлов при термической переработке   металлсодержащего сырья, патент № 2278175 4,4.

В ряде случаев для улучшения условий извлечения из шихты некоторых металлосодержащих продуктов, например, снижения температур возгонки, целесообразнее их извлекать в виде гидроксидов, в частности вольфрама в виде его гидроксида (за счет реакции паров воды с оксидом вольфрама), и вводить в состав газообразного кислородсодержащего окислителя, подаваемого в реактор при температуре около 100°С, воду. Количество воды выбирают таким образом, чтобы выполнялось соотношение 0,016способ извлечения соединений металлов при термической переработке   металлсодержащего сырья, патент № 2278175 aH2O(1-cM)/cMспособ извлечения соединений металлов при термической переработке   металлсодержащего сырья, патент № 2278175 7,5, где аH2O - массовая доля паров воды в газообразном окислителе, сM - массовая доля извлекаемого целевого металлосодержащего продукта шихты.

С целью улучшения протекания газообразного окислителя через слой шихты порошкообразное дисперсное сырье перед формированием шихты предварительно гранулируется с неорганическим связующим (например, бентонитовой глиной) с последующим нагреванием при температурах 100-300°С. В тех случаях, когда металлсодержащее сырье содержит само по себе достаточно большое по сравнению с целевым компонентом количество твердого инертного негорючего материала с достаточно большими размерами частиц, сырье можно перерабатывать без предварительной подготовки.

В качестве дополнительного компонента к металлсодержащему сырью, содержащему частицы малых размеров, в шихту вводится инертный твердый негорючий материал, представляющий собой огнеупорные частицы (например, кирпич, шамот и т.п.), состав которых не меняется в ходе горения. Это позволяет в процессе переработки обеспечить регулировку максимальной температуры в реакторе и достаточную газопроницаемость загруженной в реактор массы, предотвращая спекание перерабатываемой шихты.

При формировании шихты для организации и поддержания процесса горения в качестве добавки используется твердое топливо в количестве, соответствующем содержанию твердого горючего компонента 3-15 мас.% в массе загружаемой в реактор шихты. В качестве таких добавок могут быть использованы любые органические материалы, содержащие углерод, например угольная или торфяная крошка, древесные отходы и т.п.

В ряде случаев, когда металлсодержащее сырье является горючим, в качестве твердого горючего используется само металлсодержащее сырье, способное к самоподдерживающемуся горению в потоке газообразного окислителя, например, молибденитовые концентраты (содержащие горючий сульфид молибдена), углеводородные отходы кожевенных производств и др.

Массовое отношение расхода газообразного кислородсодержащего окислителя к расходу твердого горючего компонента шихты, загружаемой в реактор, и массовое отношение доли твердого горючего компонента к твердому остатку горения (золы), которое зависит от конкретного состава шихты, регулируются таким образом, чтобы максимальная температура в зоне горения составляла 600-1300°С, а температуры конденсирующегося металлсодержащего продукта на выходе из массы прореагировавшей шихты были достаточными для ее наиболее полной конденсации.

Инициирование процесса горения перерабатываемой шихты в реакторе осуществляется путем воспламенения ограниченной части объема реактора (например, в его нижней части со стороны вдуваемого окислителя), в частности, посредством поджигания запала, например, смеси угольной крошки и древесных опилок. Воспламенение может быть осуществлено, например, путем подачи в реактор предварительно подогретого от внешнего источника потока газообразного кислородсодержащего окислителя не менее чем до 500°С. Подачу прогретого окислителя ведут в течение промежутка времени, достаточного для формирования зоны горения, которая образуется со стороны подачи газообразного окислителя, после чего подогрев может быть отключен и термическая обработка шихты осуществляется за счет самоорганизации процесса горения.

Процесс горения протекает стабильно без использования внешних источников тепла при условии, что отношение массы сгорающего в зоне горения твердого горючего компонента шихты к массе твердых продуктов, в зависимости от конкретного состава шихты, не ниже 0,02-0,04. В случае, когда это отношение ниже, после инициирования температура в зоне горения падает, и процесс затухает. Увеличение упомянутого отношения до определенного предела, зависящего от конкретного состава шихты, приводит к повышению максимальной температуры в зоне горения, но выше этого предела максимальная температура начинает уменьшаться, несмотря на увеличение массы твердого горючего компонента, что связано со снижением количества тепла, накапливаемого твердыми продуктами в зоне горения, за счет теплообмена с газовым потоком.

Теплообмен материала шихты с газовым потоком позволяет предварительно прогревать несгоревшую часть шихты и, таким образом, повышать ее температуру по сравнению с разогревом, достижимым за счет сгорания твердого горючего. Зона возгонки летучих металлсодержащих соединений может формироваться раньше формирования зоны горения.

В ходе горения в слое шихты, противоположном месту подачи газообразного окислителя, происходит обогащение ее целевым продуктом. При этом в целом содержание целевого продукта в шихте после сгорания ниже его исходного содержания, что свидетельствует о выносе целевого продукта из зоны шихты в возгон. Отбор целевого продукта производится на выходе из слоя шихты противоположном месту подачи газообразного окислителя. Отбирается часть шихты, обогащенная целевым продуктом, с отношением "den" содержания обогащенного целевого продукта к содержанию исходного извлекаемого целевого продукта в шихте denспособ извлечения соединений металлов при термической переработке   металлсодержащего сырья, патент № 2278175 1,05 или/и отбирается целевой продукт конденсации газа на выходе за слоем шихты противоположном месту подачи газообразного окислителя. Возможно также выделение целевого продукта (возгона соединений металлов) из потока газа, где соединения металлов присутствуют в виде паров или пылевых частиц. Соединения металлов могут быть выделены из газа в известных устройствах, например, в барботажном скруббере или электрофильтре.

Примеры. В ходе лабораторных экспериментов в цилиндрическом реакторе вертикального типа проведено горение образцов шихты, представленных в таблице, содержащих гранулированные молибденитовые концентраты (1-3), гранулированные молибденсодержащие кобальтовые катализаторы (4,5), гранулированные молибденсодержащие никелевые катализаторы (6-8), гранулированные вольфрамитовые кеки (9,10), оксид цинка на угле (11), оксид цинка на шамоте (12). Гранулированные образцы металлсодержащего сырья с размером частиц 1,3-2,5 мм достаточно однородно перемешивали, за исключением опыта 3, с частицами угля размером 1,3-2,5 мм в количествах, указанных в таблице.

Приготовленные смеси образцов шихты загружали в реактор над слоем инициатора воспламенения (˜1/50 от объема шихты), представляющего собой ˜1:1 массовую смесь угля и древесных опилок. Зажигание инициатора проводилось путем подачи в реактор горячего (500-600°С) воздуха от внешнего источника нагрева в течение нескольких минут. После установления процесса горения внешний источник тепла отключался и в реактор подавался воздух при комнатной температуре. Процесс горения протекал устойчиво. В всех случаях, приведенных в таблице, максимальная температура в зоне горения превышала 850°С и в зависимости от условий эксперимента составляла 880-1280°С.

В ходе горения в опытах 1-8 наблюдался белый налет на стенках реактора на выходе за слоем шихты противоположном месту подачи газообразного окислителя, который представлял собой кристаллические частицы МоО3. Степень извлечения целевого продукта в возгон способ извлечения соединений металлов при термической переработке   металлсодержащего сырья, патент № 2278175 рассчитывали по следующему уравнению способ извлечения соединений металлов при термической переработке   металлсодержащего сырья, патент № 2278175 =100(способ извлечения соединений металлов при термической переработке   металлсодержащего сырья, патент № 2278175 исх-способ извлечения соединений металлов при термической переработке   металлсодержащего сырья, патент № 2278175 )/способ извлечения соединений металлов при термической переработке   металлсодержащего сырья, патент № 2278175 исх (%), где способ извлечения соединений металлов при термической переработке   металлсодержащего сырья, патент № 2278175 исх - содержание целевого продукта в исходной шихте (%), способ извлечения соединений металлов при термической переработке   металлсодержащего сырья, патент № 2278175 - содержание целевого продукта в шихте после сжигания (%). Во всех случаях, приведенных в таблице, степень извлечения целевого продукта в возгон выше 10% и в зависимости от параметров опыта составляла 19,2-77,3% в случае МоО3 (опыты 1-8) и 11,1-31,1% в случае WO3 (опыты 9, 10). Вовлечение в процесс горения паров воды (опыт 10) за счет введения в шихту предварительно увлажненного при комнатной температуре потока окислителя приводит к заметному возрастанию степени извлечения WO3 в возгон. В случае ZnO (опыты 11, 12) на выходе за слоем шихты противоположном месту подачи газообразного окислителя на стенках реактора наблюдалось формирование кристаллического цинка в виде цинкового зеркала и белого налета, содержащего оксид цинка. Степень извлечения цинка в возгон составляла 82-92%.

Таблица
Параметры процесса горения и количество извлеченного металла при сжигании металлсодержащих смесей.
СырьеС, мас.% Г, мас.%И, мас.% v, м3u, м/ч Tмакс, °С способ извлечения соединений металлов при термической переработке   металлсодержащего сырья, патент № 2278175 , мас.%
1 МоКГ42,620 37,41,080,26 103056,5
2МоКГ 24,59,066,5 1,440,181180 40,3
3 МоКГ53,4- 46,61,370,23 117025,9
4КСо/МоО 3Г10,010 80,00,72 2,04122025,3
5КСо/МоО 3Г10,27,5 82,31,20 1,888019,2
6KNi/МоО 3Г10,48,0 81,61,40 1,04128029,8
7KNi/МоО 3Г10,66,5 82,91,71 1,46112047,3
8KNi/МоО 3Г10,75,0 84,31,37 1,1995077,3
9WKT 2,62077,4 1,550,91100 11,1
10WKF 2,99,6 87,50,76*0,32 106031,1
11ZnO/C 0,716,383,0 0,160,57930 82,5
12ZnO/Ш 0,67,0 92,40,260,6 92092,0
МоКГ - молибденитовый концентрат (гранулированный), КСо/МоО 3Г -катализатор Со/МоО3 (гранулированный), KNi/МоО3Г - катализатор Ni/МоО 3 (гранулированный), WKF - вольфрамитовый кек (гранулированный), ZnO/C - оксид цинка на угле, ZnO/Ш - оксид цинка на шамоте, С - количество летучего компонента в шихте, Г - количество горючего в шихте, И -количество инертного разбавителя в шихте, V - скорость потока окислителя через слой шихты, u - скорость горения, Т макс, - максимальная температура в зоне горения, способ извлечения соединений металлов при термической переработке   металлсодержащего сырья, патент № 2278175 - степень извлечения летучего компонента в возгон; * - с парами Н2О.

Класс C22B7/00 Переработка сырья, кроме руды, например скрапа, с целью получения цветных металлов или их соединений

отражательная печь для переплава алюминиевого лома -  патент 2529348 (27.09.2014)
способ извлечения молибдена из техногенных минеральных образований -  патент 2529142 (27.09.2014)
способ комплексной переработки красных шламов -  патент 2528918 (20.09.2014)
способ переработки медно-ванадиевых отходов процесса очистки тетрахлорида титана -  патент 2528610 (20.09.2014)
способ извлечения металлов из потока, обогащенного углеводородами и углеродистыми остатками -  патент 2528290 (10.09.2014)
способ извлечения рения и платиновых металлов из отработанных катализаторов на носителях из оксида алюминия -  патент 2525022 (10.08.2014)
способ переработки твердых бытовых и промышленных отходов и установка для его осуществления -  патент 2523202 (20.07.2014)
способ переработки титановых шлаков -  патент 2522876 (20.07.2014)
способ утилизации твердых ртутьсодержащих отходов и устройство для его осуществления -  патент 2522676 (20.07.2014)
двух ванная отражательная печь с копильником для переплава алюминиевого лома -  патент 2522283 (10.07.2014)

Класс C22B34/34 получение молибдена

способ извлечения молибдена из техногенных минеральных образований -  патент 2529142 (27.09.2014)
устройство для производства мо-99 -  патент 2516111 (20.05.2014)
способ комплексной переработки хвостов флотационного обогащения молибденовольфрамовых руд -  патент 2509168 (10.03.2014)
способ извлечения молибдена из вольфрамсодержащих растворов -  патент 2505612 (27.01.2014)
способ извлечения молибдена и церия из отработанных железооксидных катализаторов дегидрирования олефиновых и алкилароматических углеводородов -  патент 2504594 (20.01.2014)
способ рекуперации молибдата или вольфрамата из водных растворов путем адсорбции -  патент 2501872 (20.12.2013)
способ переработки молибденитовых концентратов -  патент 2493280 (20.09.2013)
способ извлечения ценных компонентов из продуктивных растворов переработки черносланцевых руд -  патент 2493279 (20.09.2013)
способ переработки черносланцевых руд с извлечением редких металлов -  патент 2493272 (20.09.2013)
способ извлечения молибдена из кислых разбавленных растворов сложного состава -  патент 2477329 (10.03.2013)
Наверх