способ очистки сточных вод от ионов хрома (iii) и (vi)

Классы МПК:C02F1/28 сорбцией
B01J20/30 способы получения, регенерации или реактивации
Автор(ы):, , ,
Патентообладатель(и):Учреждение образования "Белорусский государственный технологический университет" (BY)
Приоритеты:
подача заявки:
2005-07-19
публикация патента:

Изобретение относится к очистке сточных вод промышленных предприятий от ионов хрома (III) и (VI). Ионы хрома извлекают путем сорбции при рН 0,6 до 6,0. В качестве сорбционных материалов используют модифицированные природные волокнистые материалы, например древесные опилки, целлюлозу, льнотресту, костру. Модификация состоит в пропитке исходного материала при 90-95°С в течение 0,3-1 ч водным раствором, содержащим смесь карбамида и фосфорной кислоты, при массовом соотношении этих компонентов в пропиточном растворе (1/2-1):(1-1/2), сушке и термообработке при 140-160°С в течение 0,3-1, отмывке от избытка модифицирующих веществ до значения рН промывных вод, равного 6,0. Предлагаемый способ очистки позволяет объединить в одну стадию удаление из растворов высокотоксичных ионов хрома (VI) и образующихся в результате восстановления ионов хрома (III). 2 табл.

Формула изобретения

Способ очистки сточных вод от ионов хрома (III) и (VI), включающий восстановление ионов хрома (VI) до ионов хрома (III) и сорбцию ионов хрома (III), отличающийся тем, что процесс очистки сточных вод ведут при 0,6способ очистки сточных вод от ионов хрома (iii) и (vi), патент № 2291113 рНспособ очистки сточных вод от ионов хрома (iii) и (vi), патент № 2291113 6,0 древесными опилками, целлюлозой, льнотрестой, кострой, модифицированными путем пропитки водным раствором смеси карбамида и фосфорной кислоты, при массовом соотношении указанных компонентов в пропиточном растворе 1:(0,5-2), при 90-95°С в течение 0,3-1 ч, при этом массовое соотношение твердой фазы к жидкой составляет 1:(4,5-5,4), с последующей термообработкой при 140-160°С в течение 0,3-1 ч и отмывкой сорбента от избытка модифицирующих веществ до значения рН промывных вод, равного 6,0.

Описание изобретения к патенту

Изобретение относится к очистке сточных вод промышленных предприятий от ионов хрома (III) и (VI) и может быть использовано в производствах, применяющих хромсодержащие электролиты, пассивацию, дубление кож и т.д.

Известен способ очистки сточных вод от ионов тяжелых металлов [1], заключающийся в том, что древесину лиственных пород обрабатывают раствором состава: фосфорная кислота 0,5-2,0 моль/л, мочевина 2-6 моль/л, при температуре 60-90°С в течение 1-3 ч при соотношении т:ж=1:(5-20). Далее материал отжимают, сушат и подвергают термообработке при температуре 140-170°С в течение 1-3 ч. После отмывки и сушки получают сорбент с обменной емкостью 3,1-4,6 мг-экв/г.

Недостатком данного способа является высокая продолжительность пропитки и термообработки, большой расход опилок и реагентов, и вследствие этого повышенная энергоемкость.

Наиболее близким техническим решением является способ очистки водных растворов от хрома (VI) [2], заключающийся в том, что взаимодействие хрома (VI) с древесными опилками осуществляют адсорбцией хрома (VI) при 2,75<рН<6 и сорбционной обменной емкости (СОЕ) 2,5-3,0 мг хрома на 1 г опилок, рН раствора регулируют непрерывной нейтрализацией раствора до оптимальных значений, и/или до восстановления при рН<2 и расходе опилок более 40 г на 1 г хрома.

Недостатками данного способа являются низкая сорбционная обменная емкость, необходимость постоянного регулирования рН раствора и высокий расход реагентов.

Задачей изобретения является оптимизация параметров получения сорбционного материала на основе целлюлозосодержащих материалов, увеличение его сорбционной обменной емкости по ионам хрома (III) и (VI) и, тем самым, уменьшение расхода сорбционного материала на единицу поглощаемого адсорбата.

Технический результат заключается в увеличении сорбционной обменной емкости по ионам хрома (III) и (VI), снижении расхода сорбционного материала и уменьшении энергозатрат при получении сорбционного материала.

Поставленная задача решается при использовании в качестве сорбента целлюлозосодержащих материалов (древесных опилок, целлюлозы, льнотресты и костры), которые модифицируют водным раствором, содержащим смесь карбамида и фосфорной кислоты, при массовом соотношении указанных компонентов в пропиточном растворе 1:(0,5-2), при температуре 90-95°С в течение 0,3-1 ч, при этом массовое соотношение твердой фазы к жидкой составляет 1:(4,5-5,4), с последующей термообработкой при 140-160°С в течение 0,3-1 ч, и отмывкой сорбента от избытка модифицирующих веществ до значения рН промывных вод, равного 6,0.

Основные стадии синтеза сорбентов:

1. Подготовка исходного материала с отделением крупных частиц в виде сколов, обрезков, кусков коры и выделением фракции 0,5-5 мм. Для получения сорбентов пригодны опилки хвойных и лиственных пород древесины и их смесь, целлюлоза, льнотреста, костра.

2. Приготовление пропиточного раствора, заключающееся в смешении реагентов в определенной пропорции.

3. Пропитка подготовленного материала фосфорилирующим раствором, содержащим карбамид и фосфорную кислоту, осуществляется в реакторе с паровым обогревом при постоянном перемешивании в течение 0,3-1 ч при температуре 90-95°С (массовое соотношение твердой фазы к жидкой 1:(4,5-5,4)). Пропитанный материал выгружается из реактора и избыток фосфорилирующего раствора удаляется путем отжима.

4. Последующая сушка и термообработка пропитанного материала осуществляется при 140-160°С в течение 0,3-1 ч. Заданный интервал температур и время термообработки являются оптимальными для получения сорбционного материала с высокими показателями сорбционной обменной емкости.

5. Отмывка термообработанного материала от избытка модифицирующих веществ на поверхности до значения рН промывных вод, равного 6.

6. Сушка полученного сорбционного материала при температуре 90-105°С до постоянной массы.

Использование данного способа позволит оптимизировать процесс очистки сточных вод от ионов хрома (VI) и (III) за счет снижения расхода сорбционного материала и реагентов.

Сорбцию осуществляли из 100 мл 1,0-0,05 н. исходного раствора К2 Cr2О7. Исходный раствор готовили растворением в воде соли К2Cr2O7 марки х.ч. Определение содержания ионов хрома (III) в растворе осуществляли их переводом в ионы хрома (VI) с использованием в качестве восстановителя персульфата аммония и индикатора N-фенилантраниловой кислоты, и последующим титрованием солью Мора, кислотно-основные характеристики раствора контролировали рН-метром.

Сорбционную обменную емкость определяли по убыли концентрации хрома на 1 г сорбента.

Сорбционная обменная емкость исследуемых материалов по Cr 3+ находится в интервале 2,5-4,5 ммоль-экв/г для сорбентов, полученных на основе древесных опилок, и 3,0-5,5 ммоль-экв/г для сорбентов, полученных на основе целлюлозы, льнотресты и костры для исследуемого интервала концентраций раствора К2 Cr2O7.

Зависимость сорбционной обменной емкости материала, полученного фосфорилированием измельченной древесины (опилок), из 0,1 н. раствора К2Cr2 O7 от массового соотношения компонентов пропиточного раствора (карбамид: фосфорная кислота) представлена в табл.1.

Таблица 1
Массовое соотношение компонентовСОЕ, ммоль-экв/г
CO(NH2) 2Н3PO 4Cr+3
11 3,5
12 2,0
1 0,52,5

По предлагаемому способу предпочтительно массовое соотношение компонентов пропиточного раствора (карбамид: фосфорная кислота) = 1:(0,5-2,0). Снижение доли фосфорной кислоты приводит к уменьшению сорбционной обменной емкости, а при снижении доли карбамида ниже указанного интервала несвязанная фосфорная кислота в процессе синтеза сорбента разрушает структуру древесины (приводит к ее обугливанию).

Степень восстановления ионов хрома (VI) (С/Со, %), и сорбционная обменная емкость по ионам хрома (III) (ммоль-экв/г) для сорбента, полученного фосфорилированием древесных опилок модифицирующим раствором с соотношением компонентов 1: 1, из 0,1 н. раствора K2 Cr2О7 в исследуемом интервале значений рН, представлены в таблице 2.

Таблица 2

рНС/Со, % СОЕ, ммоль-экв/г
0,6 953,5
1,2 753
2,4350,5
6,010 0,2

Предлагаемый интервал значений рН является предпочтительным, так как увеличение значений рН приводит к резкому уменьшению скорости восстановления ионов хрома (VI) и сорбционной обменной емкости по ионам хрома (III).

Заявляемый способ иллюстрируется следующими примерами.

Пример 1

Навеску (2 г) сорбента, полученного фосфорилированием древесных опилок, взвешенную на аналитических весах, помещали в стакан и заливали 100 мл 1,0-0,05 н. раствора соли K2Cr 2O7, периодически перемешивая. Требуемое значение рН раствора (0,6<рН<1,2) устанавливали по H2 SO4. Полное восстановление ионов хрома (VI) в исследуемом интервале значений рН происходит за 1 сутки при расходе сорбента 20-25 г на 1 г хрома в растворе. Сорбционная обменная емкость исследуемых материалов по Cr3+находится в интервале 42-80 мг-экв/г при указанных значениях рН.

Пример 2.

Навеску (6 г) сорбента, полученного фосфорилированием древесных опилок, взвешенную на аналитических весах, помещали в стеклянную колонку диаметром 20 мм, заливали 40 мл дистиллированной воды и оставляли на 24 ч для набухания. 1,0-0,05 н. раствор, содержащий ионы хрома (VI) с рН 0,6<рН<1,2, установленным по H 2SO4, пропускали через слой сорбента со скоростью 50 мл/ч. Концентрацию ионов хрома (III) и (VI) контролировали на выходе из колонки. Динамическая сорбционная обменная емкость исследуемых материалов по Cr3+находится в интервале 35-70 мг-экв/г при указанных значениях рН.

Остальные примеры удаления ионов хрома (III) и (VI) из водных растворов отличаются от рассмотренного выше материалом, на основе которого был синтезирован сорбент, то есть основой для получения сорбента служили целлюлоза, льнотреста, костра.

Использование предлагаемого способа по сравнению с прототипом позволит сократить расход сорбционного материала, обеспечить удаление из растворов высокотоксичных ионов хрома (VI) и образующихся в результате контакта с сорбционным материалом восстановленных ионов хрома (III), увеличить сорбционную емкость сорбента.

Изобретение относится к очистке сточных вод промышленных предприятий от ионов хрома (III) и (VI) и может быть использовано в производствах, применяющих хромирование, электрохимическую пассивацию, дубление кож и т.д.

Источники информации

1. Пат.RU № 2096082, кл. В 01 J 20/30. Способ получения сорбента. Опубл. 20.11.97. Бюл. № 32, 1997.

2. Пат.RU № 2125021, кл. С 02 F 1/28, 1/62. Способ очистки сточных вод от хрома (VI). Опубл. 20.01.99. Бюл. № 2, 1999.

Класс C02F1/28 сорбцией

биосорбент для ликвидации нефти с поверхности водоемов -  патент 2529771 (27.09.2014)
способ очистки водных растворов от эндотоксинов -  патент 2529221 (27.09.2014)
способ очистки природных или сточных вод от фтора и/или фосфатов -  патент 2528999 (20.09.2014)
устройства для очистки и улучшения воды -  патент 2528989 (20.09.2014)
биоразлагаемый композиционный сорбент нефти и нефтепродуктов -  патент 2528863 (20.09.2014)
способ получения сорбентов на основе гидроксида трехвалентного железа на носителе из целлюлозных волокон -  патент 2527240 (27.08.2014)
способ очистки воды от силикатов -  патент 2526986 (27.08.2014)
способ очистки сточных вод от взвешенных веществ и нефтепродуктов -  патент 2525245 (10.08.2014)
способ очистки природных вод -  патент 2524965 (10.08.2014)
способ комплексной очистки воды -  патент 2524939 (10.08.2014)

Класс B01J20/30 способы получения, регенерации или реактивации

способ получения углеродминерального сорбента -  патент 2529535 (27.09.2014)
способ получения сорбентов на основе zn(oh)2 и zns на носителе из целлюлозных волокон -  патент 2528696 (20.09.2014)
гуминово-глинистый стабилизатор эмульсии нефти в воде -  патент 2528651 (20.09.2014)
способ получения полимер-неорганических композитных сорбентов -  патент 2527217 (27.08.2014)
способ получения плавающего углеродного сорбента для очистки гидросферы от нефтепродуктов -  патент 2527095 (27.08.2014)
адсорбент для очистки газов от хлора и хлористого водорода и способ его приготовления -  патент 2527091 (27.08.2014)
способ получения сорбента для извлечения соединений ртути из водных растворов -  патент 2525416 (10.08.2014)
способ получения фильтрующей гранулированной загрузки производственно-технологических фильтров для очистки воды открытых источников водоснабжения -  патент 2524953 (10.08.2014)
способ получения адсорбирующего элемента -  патент 2524608 (27.07.2014)
способ получения регенерируемого поглотителя диоксида углерода -  патент 2524607 (27.07.2014)
Наверх