струнный акселерометр

Классы МПК:G01P15/00 Измерение ускорения и замедления; измерение импульсов ускорения
G01P15/02 с использованием сил инерции
Автор(ы):, ,
Патентообладатель(и):Федеральное Государственное Унитарное предприятие "Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений" (ФГУП "ВНИИФТРИ") (RU)
Приоритеты:
подача заявки:
2005-02-22
публикация патента:

Изобретение относится к измерительной технике и может быть использовано в системах инерциальной навигации в летательных и подводных аппаратах. В струнном акселерометре (СА), содержащем инерционную массу (ИМ), подвешенную на четырех подвесах и двух струнах по декартовой системе координат, струны выполнены в виде оптических волокон, представляющих два плеча волоконно-оптического интерферометра (ВОИ). Воздействие ускорения на СА приводит к смещению ИМ и соответствующему натяжению и расслаблению двух струн. Технический результат - получение на выходе струнного акселерометра оптического сигнала. 2 з.п. ф-лы, 2 ил. струнный акселерометр, патент № 2292050

струнный акселерометр, патент № 2292050 струнный акселерометр, патент № 2292050

Формула изобретения

1. Струнный акселерометр, содержащий инерционную массу, закрепленную в шести точках по декартовой системе координат на четырех упругих подвесах и двух струнах, элементы натяжения струн, а также последовательно соединенные усилитель и спектроанализатор, отличающийся тем, что струны выполнены в виде оптических волокон, являющихся двумя плечами волоконно-оптического интерферометра Маха-Цендера, выполненного в виде источника когерентного света и фотоприемника, оптически согласованных друг с другом через оптические волокна и последовательно соединенных с оптическими волокнами оптических волоконных катушек, при этом выход фотоприемника подключен ко входу усилителя.

2. Струнный акселерометр по п.1, отличающийся тем, что каждая из струн выполнена в виде двух скрученных между собой волокон.

3. Струнный акселерометр по п.2, отличающийся тем, что инерционная масса выполнена полой с расположенными внутри нее волоконными катушками интерферометра.

Описание изобретения к патенту

Изобретение относится к измерительной технике и может быть использовано в системах инерциальной навигации в летательных аппаратах, надводных и подводных самодвижущихся объектах.

Известен струнный акселерометр (СА), содержащий вибрирующий элемент в виде струны, элементы натяжения струны и систему съема информации с вибрирующего струнного элемента (РСТ №87/02467, кл. G 01 P 7/00, G 01 P 15/10, 1987).

Недостатком известного СА является отсутствие оптического сигнала на выходе акселерометра.

Известен СА, содержащий инерционную массу (ИМ), закрепленную в шести точках по декартовой системе координат на четырех упругих подвесах и двух струнах, элементы натяжения струн, а также последовательно соединенные усилитель и спектроанализатор (С.А.Спектор. Электрические измерения физических величин. Л.: Энергоатомиздат) ЛО, 1987, стр.226, 227).

Данный СА принят за прототип.

Недостатком прототипа, как и аналога, является отсутствие на выходе СА оптического выходного сигнала.

Техническим результатом, получаемым от внедрения изобретения, является получение на выходе СА оптического сигнала.

Данный технический результат достигают за счет того, что в известном СА, содержащем ИМ, закрепленную в шести точках по декартовой системе координат на четырех упругих подвесах и двух струнах, элементы натяжения струн, а также последовательно соединенные усилитель и спектроанализатор, струны выполнены в виде оптических волокон, являющихся двумя плечами волоконно-оптического интерферометра (ВОИ) Маха-Цендера, выполненного в виде источника когерентного света и фотоприемника, оптически согласованных друг с другом через оптические волокна и последовательно соединенных с оптическими волокнами оптических волокон катушек, при этом выход фотоприемника подключен ко входу усилителя.

ИМ может быть выполнена полой с расположенными внутри ее волоконными катушками ВОИ.

Изобретение поясняется чертежами. На фиг.1 представлена оптическая схема СА; на фиг.2 - пример конструктивной схемы СА.

СА включает в себя ИМ1, закрепленную в шести точках по декартовой системе координат на четырех упругих подвесах и двух струнах.

На фиг.1 ИМ1 подвешена на упругих подвесах 2, 3, ориентированных вдоль вертикальной координаты Z, и на упругих подвесах, ориентированных горизонтально вдоль оси Y, перпендикулярной плоскости чертежа (на чертеже не показаны).

ИМ1 подвешена также на двух струнах 4, 5, ориентированных вдоль горизонтальной оси X. Струны 4, 5 представляют собой скрученные между собой волокна (на фиг.1 скрутка волокон не отображена), являющиеся плечами ВОИ, собранного по схеме интерферометра Маха-Цендера.

ВОИ также включает в себя оптически согласованные источник 6 когерентного света, две волоконные катушки 7, 8 и фотоприемник 9. Оптические волокна, выполняющие роль упругих струн 4, 5, последовательно соединены с волоконными катушками 7, 8.

Имеются также элементы 10, 11 натяжения струн 4, 5, а также усилитель 12, подключенный к выходу фотоприемника 9 и спектроанализатор 13 (анализатор спектра), подключенный к выходу усилителя 12.

Конструктивно СА (фиг.2) выполняют, например, в виде цилиндрического корпуса 14, прикрепляемого к исследуемому изделию (на чертеже не показано), внутри которого располагают ИМ1, ВОИ со струнами 4, 5 и усилитель 12.

Электропитание на СА подается через разъем 15. Частотный выходной сигнал снимается через разъем 16 и подается на спектроанализатор 13.

Усилитель 12 и оптические элементы интерферометра сосредоточены в нижней части СА в блоке 17.

Струны 4, 5 прикрепляются к ИМ1 и элементам 10, 11 натяжения струн с помощью специального клея, например на основе эпоксидной смолы.

СА работает следующим образом.

Перед началом измерений струны 4, 5 предварительно натягивают силой F0 [H] с помощью элементов 10, 11 натяжения струн. При этом начальную разность фаз интерферирующих лучей ВОИ устанавливают равной 90°.

Длину струн l [м], по сравнению с длиной волоконных катушек 7, 8, задают такой, чтобы амплитуда частотного выходного сигнала не превышала квазилинейного участка выходной кривой ВОИ.

При воздействии на СА ускорения струнный акселерометр, патент № 2292050 , направленного влево вдоль оси X, ИМ1 будет смещаться вправо (фиг.2) с силой инерции струнный акселерометр, патент № 2292050 . При этом струна 4 будет растягиваться, а струна 5 - сжиматься.

До воздействия ускорения струнный акселерометр, патент № 2292050 частота f [Гц] каждой из струн 4, 5 определялась формулой:

струнный акселерометр, патент № 2292050

где струнный акселерометр, патент № 2292050 масса на единицу длины струны.

Частоты струн f1, f2 [Гц] при действии силы инерции струнный акселерометр, патент № 2292050 где m [кг] - масса ИМ1, будут:

струнный акселерометр, патент № 2292050

при этом разностная частота струнный акселерометр, патент № 2292050 f=f1-f2 [Гц] будет равна:

струнный акселерометр, патент № 2292050

если струнный акселерометр, патент № 2292050

то струнный акселерометр, патент № 2292050

Условие (4) показывает, что для получения высокой линейности статической градуировочной характеристики СА предварительный натяг струны F0 должен значительно превосходить силы инерции ma.

Данное условие в свою очередь совпадает с требованием малости входного сигнала для квазилинейного преобразования ВОИ.

Оптический выходной сигнал СА, содержащий две гармоники f 1 и f2, преобразуется фотоприемником 9 в электрический сигнал. После усиления в усилителе 12 сигнал поступает на спектроанализатор 13, в котором выделяются две гармонические составляющие сигнала f1 и f2 и определяется их разность струнный акселерометр, патент № 2292050 f. Выходной прибор спектроанализатора 13 может быть отградуирован в единицах ускорения а в соответствии с формулой (5).

Таким образом, на выходе СА присутствует оптический выходной сигнал, на который не воздействуют электрические и магнитные поля и который можно непосредственно передавать по волоконно-оптическим линиям связи.

Класс G01P15/00 Измерение ускорения и замедления; измерение импульсов ускорения

термоинвариантный измеритель линейного ускорения -  патент 2528119 (10.09.2014)
струнный акселерометр -  патент 2528103 (10.09.2014)
акселерометр -  патент 2527660 (10.09.2014)
чувствительный элемент интегрального акселерометра -  патент 2526789 (27.08.2014)
акселерометр -  патент 2526589 (27.08.2014)
способ настройки струнного акселерометра -  патент 2526200 (20.08.2014)
емкостный датчик перемещений -  патент 2521141 (27.06.2014)
низкочастотный складной маятник с высоким коэффициентом механического качества и сейсмический датчик с указанным маятником -  патент 2518587 (10.06.2014)
молекулярно-электронный акселерометр -  патент 2517812 (27.05.2014)
наноэлектромеханическая система для измерения параметров движения и способ ее изготовления -  патент 2517787 (27.05.2014)

Класс G01P15/02 с использованием сил инерции

низкочастотный складной маятник с высоким коэффициентом механического качества и сейсмический датчик с указанным маятником -  патент 2518587 (10.06.2014)
способ и устройство для измерения ускорения силы инерции при сдвиговом течении слоев в сыпучем теле -  патент 2461431 (20.09.2012)
способ пневматического преобразования ускорения движения тела в скорость и устройство для его осуществления -  патент 2421734 (20.06.2011)
способ измерения скорости движения тела и устройство для его осуществления -  патент 2420745 (10.06.2011)
многобалочный акселерометр для измерения ускорений физического тела и электронная модель многобалочного акселерометра -  патент 2390029 (20.05.2010)
адаптивный измерительный преобразователь ускорений типа "сопло-заслонка" -  патент 2293994 (20.02.2007)
струйный акселерометр с цифровым выходом -  патент 2286582 (27.10.2006)
интегральный микромеханический акселерометр-клинометр -  патент 2279092 (27.06.2006)
микромеханический акселерометр -  патент 2251702 (10.05.2005)
датчик ускорения -  патент 2247992 (10.03.2005)
Наверх