способ коррекции функционального состояния человека

Классы МПК:A61B5/02 измерение пульса, частоты сердечных сокращений, давления или тока крови; одновременное определение пульса (частоты сердечных сокращений) и кровяного давления; оценка состояния сердечно-сосудистой системы, не отнесенная к другим рубрикам, например использование способов и устройств, рассматриваемых в этой группе в сочетании с электрокардиографией; сердечные катетеры для измерения кровяного давления
A61B5/0452 определение специфических параметров электрокардиографического цикла
A61B5/0482 с использованием биологической обратной связи
Автор(ы):, ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования "Курский государственный технический университет" (RU)
Приоритеты:
подача заявки:
2006-05-29
публикация патента:

Способ относится к медицине, а именно к физиологии и терапии. Регистрируют и анализируют кардиоинтервалограммы пациента в реальном времени. Синхронизируют дыхательные движения с колебаниями собственного сердечного ритма. Команды вдоха-выдоха человеку формирует микроконтроллер на основе анализа текущей кардиоинтервалограммы, причем команда на вдох выдается микроконтроллером при регистрации максимума кардиоинтервалограммы и при условии окончания временного интервала блокировки анализа, в течение которого микроконтроллер не выдает команды даже при наличии экстремума. Команда на выдох выдается при регистрации минимума кардиоинтервалограммы и при условии окончания временного интервала блокировки анализа, причем временной интервал блокировки анализа начинается во время команды вдоха с длительностью три кардиоцикла или выдоха с длительностью один кардиоцикл. Способ повышает эффективность систем диагностики и коррекции функционального состояния человека. 6 ил. способ коррекции функционального состояния человека, патент № 2323681

способ коррекции функционального состояния человека, патент № 2323681 способ коррекции функционального состояния человека, патент № 2323681 способ коррекции функционального состояния человека, патент № 2323681 способ коррекции функционального состояния человека, патент № 2323681 способ коррекции функционального состояния человека, патент № 2323681 способ коррекции функционального состояния человека, патент № 2323681

Формула изобретения

Способ функциональной коррекции состояния человека, включающий регистрацию и анализ кардиоинтервалограммы пациента в реальном времени и синхронизацию дыхательных движений с колебаниями собственного сердечного ритма: вдох осуществляется при регистрации максимума кардиоинтервалограммы, а выдох осуществляется при регистрации минимума кардиоинтервалограммы, отличающийся тем, что команды вдоха-выдоха человеку формирует микроконтроллер на основе анализа текущей кардиоинтервалограммы, причем команда на вдох выдается микроконтроллером при регистрации максимума кардиоинтервалограммы и при условии окончания временного интервала блокировки анализа, в течение которого микроконтроллер не выдает команды даже при наличии экстремума, а команда на выдох выдается при регистрации минимума кардиоинтервалограммы и при условии окончания временного интервала блокировки анализа, причем временной интервал блокировки анализа начинается во время команды вдоха с длительностью три кардиоцикла или выдоха с длительностью один кардиоцикл.

Описание изобретения к патенту

Изобретение относится к медицине, а именно к физиологии и терапии, и может быть использовано в системах диагностики и коррекции функционального состояния человека.

Известен «Способ функциональной психофизиологической коррекции состояния человека и диагностики в процессе коррекции» (патент РФ №2221477), сущность которого заключается в визуальном представлении пациенту его собственной кардиоритмограммы (кардиоинтервалограммы) в реальном времени, при этом пациент анализирует свою кардиоритмограмму и синхронизирует свои дыхательные движения с колебаниями собственного сердечного ритма: при повышении частоты сердечных сокращений осуществляет вдох, а при снижении частоты сердечных сокращений - выдох. Такая кардиореспираторная синхронизация (тренинг с биологической обратной связью (БОС) кардиореспираторной системы, кардиореспираторный БОС-тренинг) стимулирует блуждающий нерв, приводит к релаксации пациента. Недостатком способа является активная вовлеченность в анализ кардиоритмограммы пациента, что снижает степень его релаксации. Вторым недостатком является привязанность пациента (испытуемого) к монитору, что накладывает ограничения на условия проведения сеансов биологической обратной связи и затрудняет или даже делает невозможным сочетание сеансов биологической обратной связи с другими видами активной нагрузки на организм (физической, психологической и др.).

Задачей изобретения является повышение эффективности воздействия на вегетативную нервную систему человека способами кардиореспираторной синхронизации с организацией биологической обратной связи путем исключения дополнительной психологической нагрузки на пациента в виде анализа собственной кардиоинтервалограммы, а также повышение мобильности всего комплекса кардиореспираторной синхронизации для сочетания сеансов биологической обратной связи с другими видами активной нагрузки на организм путем исключения обязательной визуальной связи пациента с комплексом.

Сущность изобретения заключается в коррекции функционального состояния человека посредством ввода в цепь биологической обратной связи микрокомпьютерного регистратора-анализатора, который анализирует кардиоинтервалограмму и в оптимальные моменты времени формирует управляющие команды на вдох-выдох, которым подчиняется пациент.

На фиг.1 представлена структурная схема комплекса кардиореспираторной синхронизации; на фиг.2 представлена кардиоинтервалограмма с запоздалой реакцией частоты сердечных соеращений (ЧСС) на вдох (с «парадоксальной» реакцией); на фиг.3 представлена блок-схема алгоритма подпрограммы, обеспечивающей анализ кардиоинтервалограммы и формирование управляющих сигналов; на фиг.4 представлено сравнение реальных графиков кардиоинтервалограммы во время проведения сеанса кардиореспираторного БОС-тренинга предлагаемым способом и способом, предложенным в прототипе, у одного и того же человека; на фиг.5 показана кардиоинтервалограмма во время проведения сеанса кардиореспираторного БОС-тренинга предлагаемым способом в сочетании с равномерной нагрузкой на велоэргометре. На фиг.6 представлена кардиоинтервалограмма при совмещении сеансов кардиореспираторного БОС-тренинга с ортостатической пробой.

Способ осуществляется следующим образом. На человека 1 накладывают электроды 2 микрокомпьютерного регистратора-анализатора. Потенциалы электрокардиограммы усиливаются усилителем биопотенциалов 3, фильтруются от помех блоком фильтров 4 и поступают на аналоговый вход микроконтроллера 5, программа которого позволяет оцифровывать сигнал, выделять RR-интервалы, затем их регистрировать в памяти (блок 7, фиг.1), анализировать и, в результате анализа, формировать управляющие сигналы на вдох-выдох, которые поступают на блок выдачи команд (блок 6, фиг.1). Блок выдачи команд воздействует на органы слуха, и(или) зрения, и(или) осязания человека, т.е. выдает команды в звуковом, и(или) визуальном, и(или) тактильном виде. Человек подчиняется командам и совершает дыхательные движения, которые обратно воздействуют на RR-интервалы (частоту сердечных сокращений), т.е. цепь биологической обратной связи замыкается. Для достижения максимальной релаксации рекомендуется поза лежа и(или) с закрытыми глазами.

Как известно, при вдохе RR-интервалы укорачиваются относительно исходного уровня (частота сердечных сокращений увеличивается), а при выдохе RR-интервалы удлиняются относительно исходного уровня (частота сердечных сокращений уменьшается). Процесс монотонного уменьшения RR-интервалов на вдохе у большинства здоровых людей длится примерно 4-7 секунд, а затем, даже при продолжающемся вдохе, RR-интервалы начинают увеличиваться. Процесс монотонного увеличения RR-интервалов на выдохе у большинства здоровых людей длится примерно 3-5 секунд (и происходит, как правило, быстрее процесса монотонного уменьшения RR-интервалов), а затем, даже при продолжающемся выдохе, RR-интервалы начинают уменьшаться. Если в момент перехода через максимум кардиоинтервалограммы изменить фазу дыхания, то наступит кардиореспираторная синхронизация (явление функционального резонанса кардиореспираторной системы [1]) с максимальной стимуляцией блуждающего нерва и релаксацией пациента. На этом явлении основана работа выбранного прототипа, а также целый ряд других подобных методик [2, 3]. Однако организация биологической обратной связи в этих способах подразумевает активную вовлеченность в анализ кардиоритмограммы пациента, что снижает степень его релаксации, а также формирует привязанность пациента (испытуемого) к монитору, а это накладывает ограничения на условия проведения сеансов биологической обратной связи. Устранить эти недостатки возможно вводом в цепь биологической обратной связи микрокомпьютерного регистратора-анализатора, который анализирует кардиоинтервалограмму и в оптимальные моменты времени формирует управляющие команды на вдох-выдох, которым подчиняется пациент.

Практические испытания способа организации биологической обратной связи с анализом кардиоинтервалограммы пациента микрокомпьютерным регистратором-анализатором в реальном времени показали, что в ряде случаев характер изменения RR-интервалов при вдохе и выдохе не подчиняется выше сформулированному правилу и происходит обратная («парадоксальная») реакция, в частности у некоторых людей наблюдалась запоздалая реакция учащения (урежения) ритма сердца на вдох (выдох), что приводило к появлению вслед за одним экстремумом других экстремумов, непосредственно не связанных с явлением кардиореспираторной синхронизации (функционального резонанса), а зависящих от индивидуальных особенностей реакции ритма сердца на дыхательные движения. Из-за этого микрокомпьютерный регистратор-анализатор выдавал неверные команды. Для ликвидации этого негативного эффекта был введен сразу за выданной командой интервал блокировки анализа, во время которого наличие экстремума не приводит к выдаче управляющей команды. Длительность интервала блокировки целесообразно брать равным трем кардиоциклам после команды вдоха и одному кардиоциклу после команды выдоха. Это значение является компромиссом между ошибками первого и второго рода, то есть между пропуском экстремума, обусловленного резонансными свойствами кардиореспираторной системы и ложными срабатываниям анализатора экстремумов. Различие длительности этих двух интервалов блокировки обусловлено разной скоростью процессов увеличения и уменьшения RR-интервалов (фиг.2).

Блок-схема алгоритма подпрограммы микроконтроллера, обеспечивающей анализ кардиоинтервалограммы и формирование управляющих сигналов с учетом интервала блокировки, представлена на фиг.3.

На фиг.4 представлено сравнение кардиоинтервалограмм, полученных у одного и того же человека в одинаковых условиях способом, описанном в прототипе (слева на фиг.4) и предлагаемым способом (справа на фиг.4). По субъективным ощущениям глубина релаксации при организации биологической обратной связи предлагаемым способом выше, чем при организации биологической обратной связи способом-прототипом. По объективным данным при кардиореспираторной синхронизации способом-прототипом усредненные RR-интервалы удлинились с 0,75 до 0,87 с (ЧСС соответственно уменьшилась с 80 до 69 уд./мин), а при кардиореспираторной синхронизации предлагаемым способом усредненные RR-интервалы удлинились с 0,76 до 1,05 с (ЧСС соответственно уменьшилась с 79 до 57 уд./мин), что отражает большую релаксацию пациента и большую стимуляцию блуждающего нерва предлагаемым способом по сравнению с прототипом. Подобные результаты получены и у других испытуемых.

Человеку в предлагаемом способе организации биологической обратной связи отводится пассивная роль, т.е. человек просто подчиняется командам микрокомпьютерного регистратора-анализатора, причем визуальная связь с техническими устройствами не обязательна, достаточна звуковая связь. Это позволяет совместить сеансы биологической обратной связи с другими видами активной нагрузки на организм (физической, психологической и др.). На фиг.5 представлен пример кардиоинтервалограммы при совмещении сеансов кардиореспираторного БОС-тренинга предлагаемым способом с равномерной нагрузкой на велоэргометре, а на фиг.6 представлена кардиоинтервалограмма при совмещении сеансов кардиореспираторного БОС-тренинга с ортостатической пробой.

Таким образом, ввод в цепь биологической обратной связи микрокомпьютерного регистратора-анализатора, который анализирует кардиоинтервалограмму и в оптимальные моменты времени формирует управляющие команды на вдох-выдох, которым подчиняется пациент, исключает дополнительную психологическую нагрузку на пациента в виде анализа собственной кардиоинтервалограммы, а также исключает обязательную визуальную связь пациента с техническими устройствами, что позволяет добиться большей релаксации пациента, повысить эффективность воздействия на вегетативную нервную систему человека способами кардиореспираторной синхронизации с организацией биологической обратной связи, а также повысить мобильность всего комплекса кардиореспираторной синхронизации для сочетания сеансов биологической обратной связи с другими видами активной нагрузки на организм. Ввод в подпрограмму анализа экстремумов интервалов блокировки анализа позволяет учитывать возможность индивидуальной реакции учащения (урежения) ритма сердца на вдох (выдох) с появлением вслед за одним экстремумом кардиоинтервалограммы других экстремумов, непосредственно не связанных с явлением кардиореспираторной синхронизации (функционального резонанса) и являющихся в данном случае шумом.

Источники информации

1. Ващилло Е.Г., Зингерман А.М, Константинов М.А. Исследование резонансных характеристик сердечно-сосудистой системы. //Физиология человека, 1983. Т.9, №2. С.257-265.

2. Патент РФ №2190952. Способ лечения опийной зависимости, отягощенной нейроциркуляторной дистонией, у подростков в остром периоде / Яковлев Н.М., Сметанкин А.А. Опубл. 2002.10.20.

3. Авт. св. СССР №1745200. Способ функциональной коррекции артериального давления/ Гондарева Л.Н., Василевский Н.Н., Сейсембеков Т.З. и др., Опубл. 1992.07.07.

Класс A61B5/02 измерение пульса, частоты сердечных сокращений, давления или тока крови; одновременное определение пульса (частоты сердечных сокращений) и кровяного давления; оценка состояния сердечно-сосудистой системы, не отнесенная к другим рубрикам, например использование способов и устройств, рассматриваемых в этой группе в сочетании с электрокардиографией; сердечные катетеры для измерения кровяного давления

способ оценки вегетативной регуляции деятельности системы кровообращения -  патент 2526257 (20.08.2014)
способ прогнозирования уровня адаптации горноспасателей к индивидуальным средствам защиты -  патент 2524770 (10.08.2014)
способ определения риска возникновения сердечно-сосудистых осложнений у больных хронической ишемической болезнью сердца в течение ближайших 3 лет -  патент 2524417 (27.07.2014)
способ экспресс-оценки функционального состояния артериального сосудистого русла -  патент 2523680 (20.07.2014)
способ физической реабилитации больных ишемической болезнью сердца после хирургического лечения с использованием бальных танцев -  патент 2519977 (20.06.2014)
устройство для пульсовой диагностики -  патент 2519629 (20.06.2014)
способ диагностики нарушения сократимости муфт легочных вен после процедуры радиочастотной аблации -  патент 2518926 (10.06.2014)
способ обезболивания после тотального эндопротезирования тазобедренного сустава при деформирующих коксартрозах -  патент 2515754 (20.05.2014)
способ профилактики развития мозговых нарушений и осложнений сердечно-сосудистых заболеваний в предгипертоническом состоянии -  патент 2515482 (10.05.2014)
способ непрямой оценки потребления кислорода человеком -  патент 2514885 (10.05.2014)

Класс A61B5/0452 определение специфических параметров электрокардиографического цикла

способ прогнозирования уровня адаптации горноспасателей к индивидуальным средствам защиты -  патент 2524770 (10.08.2014)
способ диагностики вегетативных нарушений у больных с нейрогенными обмороками -  патент 2517472 (27.05.2014)
способ диагностики нарушений вегетативной регуляции сердечного ритма у детей с гастроэзофагеальной рефлюксной болезнью -  патент 2517370 (27.05.2014)
автоматическая идентификация инфаркт-зависимой коронарной артерии путем анатомически ориентированного отображения на дисплее данных экг -  патент 2512931 (10.04.2014)
способ определения риска развития фибрилляции предсердий -  патент 2497446 (10.11.2013)
способ функциональной предоперационной диагностики послеоперационных осложнений у пациентов после протезирующей герниопластики по поводу послеоперационных грыж -  патент 2491885 (10.09.2013)
способ диагностики автономной кардиальной нейропатии у больных сахарным диабетом типа 2 -  патент 2475183 (20.02.2013)
способ выбора тактики лечения головной боли напряжения -  патент 2468746 (10.12.2012)
способ диагностики печеночной энцефалопатии латентной стадии у больных хроническими заболеваниями печени -  патент 2468745 (10.12.2012)
способ выявления переутомления у лиц операторских профессий -  патент 2467683 (27.11.2012)

Класс A61B5/0482 с использованием биологической обратной связи

способ реабилитации больных, перенесших инсульт -  патент 2523349 (20.07.2014)
способ прогнозирования слабости родовой деятельности -  патент 2478339 (10.04.2013)
способ нормализации психофизиологического состояния -  патент 2410025 (27.01.2011)
способ целенаправленного изменения психоэмоционального состояния человека путем комплексной аудиовизуальной стимуляции -  патент 2407432 (27.12.2010)
способ лечения эректильной дисфункции -  патент 2334458 (27.09.2008)
способ повышения зрительных функций у детей с врожденным оптическим нистагмом -  патент 2295280 (20.03.2007)
автоматизированное устройство для регистрации и анализа вызванной биоэлектрической активности мозга испытуемого -  патент 2266043 (20.12.2005)
способ определения степени риска развития интраоперационного тригемино-кардиального рефлекса у больных с вестибулярной шванномой -  патент 2252697 (27.05.2005)
способ диагностики эпилепсии -  патент 2192780 (20.11.2002)
способ биоакустической коррекции психофизиологического состояния организма -  патент 2192777 (20.11.2002)
Наверх