способ получения терморасширенного графита

Классы МПК:C01B31/04 графит 
C25B1/00 Электролитические способы получения неорганических соединений или неметаллов
Автор(ы):, , , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Карбон 213" (RU)
Приоритеты:
подача заявки:
2009-05-25
публикация патента:

Изобретение предназначено для получения гибкой графитовой фольги, сорбентов и огнезащитных материалов. В электролизер помещают дисперсный графит и 12-48% водный раствор нитрата меди. Проводят анодное окисление графита при постоянном потенциале 2,3-2,6 В с сообщением количества электричества 100-150 мА·ч/г графита. Полученный окисленный графит сушат и термообрабатывают до получения терморасширенного графита при температуре 250°С или 900°С. Изобретение снижает затрачиваемое количество электричества при получении терморасширенного графита с низкой насыпной плотностью, повышает экологическую безопасность процесса. 1 табл.

Формула изобретения

Способ получения терморасширенного графита, включающий электрохимическую обработку графитовых частиц в водном электролите до получения окисленного графита, сушку и термообработку при температуре 250°С или 900°С до получения терморасширенного графита, отличающийся тем, что в качестве электролита используется водный раствор нитрата меди с концентрацией 12-48%, а электрохимическую обработку ведут при постоянном анодном потенциале 2,3-2,6 В с сообщением количества электричества 100-150 мА·ч/г графита.

Описание изобретения к патенту

Изобретение предназначено для получения терморасширенного графита, который используется в производстве гибкой фольги и графитового прокладочного материала, а также графитовых уплотнений на их основе, таких как уплотнительные прокладки разных типов, сальниковые кольца, плетеные набивки и т.д. На стадии получения окисленный графит может быть использован как основа огнезащитных покрытий.

Известен способ получения терморасширенного графита, заключающийся в анодной обработке дисперсного графита в водном солевом электролите при температуре от 30 до 50°С с анодным потенциалом от 2 до 10 В. В качестве солевых электролитов рекомендованы растворы аммониевых солей, соли щелочных и щелочноземельных металлов, имеющие в качестве аниона нитрат, сульфат, кислый сульфат, бромат, йодат, хлотат, перхлорат, фторид, бромид, трифтор-ацетат, или смесь иодида и хлорида.

После анодной обработки окисленный графит подвергали терморасширению при температуре 400, 500 и 900°C. Полученный терморасширенный графит имел насыпную плотность от 6 до 333 г/дм3, пропущенное количество электричества достигало величин от 66 до 1100 мА·ч/г графита. При этом наилучшие образцы терморасширенного графита с насыпной плотностью около 6 г/дм3, были получены при пропускании количества электричества 1100 мА·ч/г графита и температуре расширения 900°C. Пропускание в ходе синтеза такого значительного количества электричества является основным недостатком данного способа [1].

Известен способ получения терморасширенного графита анодной обработкой дисперсного графита в электролитах на основе азотнокислого аммония. Цель изобретения - уменьшение насыпной плотности графита и повышение прочности на разрыв изделий из него. Окисление ведут в электролите следующего состава, г/л: азотнокислый аммоний 60-120; мочевина 30-75; щавелевокислый аммоний 2-10. Окисленный графит промывают, сушат при 100-105°C и термообрабатывают при 630°C.

Насыпная плотность графита, обработанного данным электролитом, составляет 4-6 г/дм3, максимальный предел прочности на разрыв прессованной ленты 8,0-9,1 Н/мм2.

К недостаткам данного метода можно отнести выделение в ходе синтеза аммиака [2].

Наиболее близким к предложенному техническому решению является способ получения терморасширенного графита, включающий электрохимическую обработку дисперсного графита в водном электролите - растворе азотной кислоты до получения окисленного графита, промывку водой, сушку и термообработку при температуре 150-250°C, 900°C. Электрохимическую обработку ведут при постоянном анодном потенциале (Еа=2,1-2,7 В - предварительная стадия и Еа=1,65-2,1 В - основная стадия), с сообщением количества электричества не менее 50 мА·ч/г графита, в одну или более стадий, в водном растворе азотной кислоты, с концентрацией 20-58%. Низкая насыпная плотность (dтрг способ получения терморасширенного графита, патент № 2417160 2 г/дм3), при температуре вспенивания 250°C, была получена при сообщении 250-420 мА·ч/г графита в две стадии, при этом процесс длился от 1,5 до 6 часов. В ходе синтеза на катоде протекает процесс восстановления азотной кислоты с образованием токсичных оксидов азота [3].

Задачей предложенного изобретения является снижение затрачиваемого количества электричества при получении терморасширенного графита с низкой насыпной плотностью, повышение экологической безопасности процесса.

Поставленная задача решается тем, что в способе получения терморасширенного графита, включающем электрохимическую обработку дисперсного графита в водном электролите до получения окисленного графита, сушку и термическую обработку при температуре 250°C или 900°C, в качестве электролита используют водный раствор нитрата меди с концентрацией от 12%-48%, а электрохимическую обработку ведут при постоянном анодном потенциале 2,3-2,6 В с сообщением количества электричества 100-150 мА·ч/г графита.

Принципиальным отличием данного способа является то, что вместо традиционно используемого раствора азотной кислоты в качестве электролита используется раствор нитрата меди. В качестве основных рабочих материалов использовали графит (графит КНР среднечешуйчатый химически очищенный стандарт GB/T 3518-95, 3520-95, 3521-95, зольность не более 0,2%, массовая доля влаги и серы не более 0,9% и 0,03% соответственно) и электролит-раствор нитрата меди. Электролит готовили путем растворения Cu(NO3) 2·2H2O (ГОСТ 4163-68) в дистиллированной воде. Насыпную плотность терморасширенного графита определяли по стандартной методике ВНИИЭИ (ОСТ 16-0689.031-74)

В таблице 1 представлены режимы анодного окисления дисперсного графита и значения насыпной плотности терморасширенного графита, полученного при данных режимах.

Пример 1. Анодное окисление смеси 1 г дисперсного графита с 12 мл 48% раствора нитрата меди вели при потенциале 2,3 В с сообщением 150 мА·ч/г графита в электродной ячейке, содержащей анодную камеру, расположенную между токоотводом анода и подвижным поршнем с диафрагмой, а также катод, расположенный в электролите над поршнем (давление на поршень 0,2 кг/см2).

После завершения электрохимического синтеза окисленный графит подвергали сушке до постоянного веса при комнатной температуре. Термообработку проводили при температуре 250°C 10 мин или при 900°C 5 сек. После термического расширения, получили терморасширенный графит с насыпной плотностью 2,0 г/дм3 при термообработке в 250°C и 2,0 г/дм 3 при 900°C.

Пример 2. Обработку проводили в соответствии с примером 1 при сообщении 100 мА·ч/г графита. Терморасширенный графит имел насыпную плотность при термообработке 250°C и 900°C 3,8 г/дм3 и 2,5 г/дм3 соответственно.

Пример 3 по 10. Анодное окисление графита проводят в растворе нитрата меди с концентрацией от 12 до 36%. Режимы обработки и полученные результаты сведены в таблицу 1.

Пример 11 по 12, по любому из п.1-2, отличается тем, что анодный потенциал 2.4 В. Результаты представлены в таблице 1.

Пример 13-14 по любому из п.1-2, отличаются тем, что анодный потенциал составляет 2,5 В. Результаты представлены в таблице 1.

Пример 15-16 по любому из п.1-2, отличаются тем, что анодный потенциал составляет 2,6 В. Результаты представлены в таблице 1.

При концентрации (C, %) ниже 12, для получения терморасширенного графита с насыпной плотностью (d, г/дм3) около 2, необходимо увеличение сообщаемого количества электричества и повышение анодного потенциала, что способствует интенсивному выделению кислорода, приводящему к электрохимической деструкции углеродного материала, что в свою очередь снижает способность окисленного графита к терморасширению. Увеличение концентрации более 48% нерационально из-за повышения расхода нитрата меди. Рекомендуемый предел анодного потенциала (Ea, B) - 2,3÷2,6 В. Так как проведение синтеза при потенциале <2,3 В сильно увеличивает время сообщения необходимого количества электричества 100-150 мА·ч/г графита, а анодное окисление в области потенциалов более 2,6 В способствует увеличению скорости побочных реакций, выделению кислорода и снижению доли сообщаемого количества электричества, затрачиваемой на окисление графита. При сообщении количества электричества (Q, мА·ч/г графита) менее 100 насыпная плотность терморасширенного графита не достигает желаемого результата способ получения терморасширенного графита, патент № 2417160 2 г/дм3. Верхнее значение сообщаемого количества электричества 150 мА·ч/г графита, дальнейшее его увеличение не рационально из-за повышения расхода электроэнергии.

Из представленных примеров и данных приведенных ранее, очевидны следующие преимущества:

1. Снижение необходимого количества электричества при получении терморасширенного графита с насыпной плотностью около 2,0 г/дм3 с низкой температурой вспенивания 250°C. В предложенном способе расходуется 150 мА·ч/г графита, при анодном окислении смеси дисперсного графита с 48% раствором нитрата меди при постоянном анодном потенциале 2.3 В. В прототипе расходуется 250 мА·ч/г графита, при анодном окислении смеси дисперсного графита с 58% раствором азотной кислоты при постоянном анодном потенциале 1,7 В.

2. Повышение экологической безопасности процесса, так как замена азотной кислоты на нитрат меди исключает процесс восстановления азотной кислоты с образованием токсичных оксидов азота.

Таблица 1.
Потенциал анода Ea, B Концентрация Cu(NO3)2 C, % Сообщаемое количество электричества Q, мА·ч/г графита Насыпная плотность d, г/дм3
250°C900°C
способ получения терморасширенного графита, патент № 2417160 48 1003,8 2,5
способ получения терморасширенного графита, патент № 2417160 способ получения терморасширенного графита, патент № 2417160 150 2,02,0
способ получения терморасширенного графита, патент № 2417160 36 1005,5 2,8
способ получения терморасширенного графита, патент № 2417160 способ получения терморасширенного графита, патент № 2417160 150 6,02,8
2.3 24100 6,94,8
способ получения терморасширенного графита, патент № 2417160 способ получения терморасширенного графита, патент № 2417160 150 5,72,1
способ получения терморасширенного графита, патент № 2417160 18 1009,4 2,6
способ получения терморасширенного графита, патент № 2417160 способ получения терморасширенного графита, патент № 2417160 150 3,41,7
способ получения терморасширенного графита, патент № 2417160 12 1007,7 2,6
способ получения терморасширенного графита, патент № 2417160 способ получения терморасширенного графита, патент № 2417160 150 4,92,4
2.4 48100 3,91,8
способ получения терморасширенного графита, патент № 2417160 способ получения терморасширенного графита, патент № 2417160 150 2,61,7
2.5 48100 7,21,8
способ получения терморасширенного графита, патент № 2417160 способ получения терморасширенного графита, патент № 2417160 150 4,31,6
2.6 48100 3,82,0
способ получения терморасширенного графита, патент № 2417160 способ получения терморасширенного графита, патент № 2417160 150 2,91,7

Источники

1. Пат. 3323869 США, МКИ C01B 31/04. Способ получения расширенного графита / заявитель и патентообладатель The dow chemical company / - № 19755/67; заявл. 28.04.1967; опубл. 02.04.1970.

2. А.с. 1609744 СССР, МКИ3 C01B 31/04. Электролит для получения вспученного графита / Т.Ф.Юдина, Г.А.Уварова, A.M.Романюха и др (СССР). - № 4604488/31-26; заявл. 11.11.98; опубл. 30.11.90 // Бюл. № 12. - с.1.

3. Пат. 2233794 Российская Федерация, МПК7 C01B 31/04, C25B 1/00. Способ получения пенографита и пенографит, полученный данным способом / В.В.Авдеев, А.И.Финаенов, А.В.Яковлев и др.; заявитель и патенообладатель Акционерное общество закрытого типа «ГРАВИОНИКС» / - 2003121292/15; заяв 14.07.03; опубл. 10.08.04 // Изобретения. Полезные модели. - 2004. - № 22. - С.430.

Класс C01B31/04 графит 

способ изготовления низкоплотных материалов и низкоплотный материал -  патент 2525488 (20.08.2014)
способ и установка для производства терморасширенного графита -  патент 2524933 (10.08.2014)
способ получения слоя фторографена -  патент 2511613 (10.04.2014)
графеновое устройство и способ его изготовления -  патент 2511127 (10.04.2014)
углеродсодержащие материалы, полученные из латекса -  патент 2505480 (27.01.2014)
способ получения композиционного материала, содержащего слоистые материалы на основе графита и сульфида молибдена -  патент 2495752 (20.10.2013)
способ графитации углеродных изделий и устройство для его осуществления -  патент 2494963 (10.10.2013)
способ изготовления изделий из углерод-карбидокремниевого материала -  патент 2494962 (10.10.2013)
способ изготовления изделий из углерод-карбидокремниевого материала -  патент 2494043 (27.09.2013)
способ изготовления изделий из углерод-карбидокремниевого материала -  патент 2494042 (27.09.2013)

Класс C25B1/00 Электролитические способы получения неорганических соединений или неметаллов

способ получения йодирующего агента -  патент 2528402 (20.09.2014)
способ получения жидкого средства для очистки воды -  патент 2528381 (20.09.2014)
способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале -  патент 2525543 (20.08.2014)
бортовая электролизная установка космического аппарата -  патент 2525350 (10.08.2014)
способ получения магнетита -  патент 2524609 (27.07.2014)
способ электролиза водных растворов хлористого водорода или хлорида щелочного металла в электролизере и установка для реализации данного способа -  патент 2521971 (10.07.2014)
способы получения водорода из воды и преобразования частоты, устройство для осуществления первого способа (водородная ячейка) -  патент 2521868 (10.07.2014)
способ и устройство для получения водорода из воды -  патент 2520490 (27.06.2014)
способ преобразования солнечной энергии в химическую и аккумулирование ее в водородсодержащих продуктах -  патент 2520475 (27.06.2014)
активация катода -  патент 2518899 (10.06.2014)
Наверх