способ калибровки датчиков импульсного давления

Классы МПК:G01L27/00 Испытание и калибровка устройств для измерения давления текучей среды
Автор(ы):, ,
Патентообладатель(и):Государственное научное учреждение "Институт физики имени Б.И. Степанова Национальной академии наук Беларуси" (BY)
Приоритеты:
подача заявки:
2011-07-27
публикация патента:

Изобретение относится к области техники измерения импульсных давлений и может найти широкое применение для калибровки различного типа датчиков импульсного давления, а также для проверки и установления их работоспособности. Заявлен способ калибровки датчика импульсного давления, основанный на сравнении показания калибруемого датчика с амплитудой давления воздействующей на него ударной волны. Согласно заявленному способу воздействие осуществляют сферической ударной волной, направленной по нормали к чувствительному элементу датчика и генерированной лазерным пробоем воздуха. Амплитуду ударной волны рассчитывают аналитически. Технический результат: повышение энергетической эффективности и производительности процесса калибровки. 2 ил. способ калибровки датчиков импульсного давления, патент № 2469284

способ калибровки датчиков импульсного давления, патент № 2469284 способ калибровки датчиков импульсного давления, патент № 2469284

Формула изобретения

Способ калибровки датчика импульсного давления, основанный на сравнении показания калибруемого датчика с амплитудой давления воздействующей на него ударной волны, отличающийся тем, что воздействие осуществляют сферической ударной волной, направленной по нормали к чувствительному элементу датчика и генерированной лазерным пробоем воздуха, амплитуду ударной волны рассчитывают аналитически.

Описание изобретения к патенту

Изобретение относится к области техники измерения импульсных давлений и может быть использовано при экспериментальных исследованиях в газодинамике, лазерной физике, в различных областях техники для обеспечения измерений импульсного давления.

Известен способ калибровки датчиков импульсного давления путем использования баллистического маятника [1]. Маятник выполнен в виде подвешенного на нити твердого шарика известной массы, который наносит удар по чувствительному элементу датчика. По высоте предварительного подъема шарика определяется амплитуда импульсного давления при ударе. Сравнивая эту амплитуду с показаниями датчика, получают искомый коэффициент калибровки. Недостаток этого способа обусловлен большой длительностью времени соударения шарика с датчиком. И если эта длительность превышает время возврата отраженного сигнала внутри датчика, то такой способ калибровки неприменим. Область контакта при ударе мала по сравнению с поперечным размером чувствительного элемента датчика. Вследствие этого в чувствительном элементе инициируется не плоская, а сферическая волна возмущения, что вносит ошибку в определение коэффициента калибровки. Другой недостаток данного способа - низкая производительность. Он позволяет калибровать датчики по одному. Кроме того, для использования этого способа требуются аналитические весы, чтобы точно определить вес шарика.

Известен способ калибровки датчиков импульсного давления путем воздействия на чувствительный элемент датчика ударной волны (УВ), инициированной взрывом небольшого заряда химического взрывчатого вещества (ВВ) или электрическим взрывом проволочки [2]. Недостатком данного способа является сложность и высокая стоимость используемого оборудования в виде взрывной камеры, внутри которой помещен заряд ВВ и на стенке которой укреплены калибруемый и образцовый датчики. Другой недостаток - низкая производительность. Датчики можно калибровать по одному. Кроме того, для калибровки требуется дополнительный датчик. Недостатком является также сложность проведения взрывных работ. Кроме того, при использовании данного способа в лаборатории или на производственном участке нужно хранить запас ВВ, что создает повышенную пожаро- и взрывоопасность.

Был также предложен способ калибровки путем воздействия на чувствительный элемент датчика УВ, создаваемой в ударной трубе, состоящей из двух камер высокого и низкого давления, разделенных мембраной [3]. Недостатком этого способа является использование сложного и дорогостоящего оборудования. Кроме того, для того чтобы прокалибровать один датчик, требуется использование двух дополнительных датчиков для измерения скорости УВ. Недостатком данного способа также является низкая производительность. За один цикл работы установки можно прокалибровать только один датчик.

Наиболее близким к заявляемому является способ, предложенный в [4], где калибровку осуществляют путем воздействия на чувствительный элемент датчика плоской УВ, инициированной приповерхностным лазерным пробоем воздуха. Для реализации этого способа применяют специальное устройство, представляющее собой ударную трубку с телескопической насадкой, в которой закрепляется калибруемый датчик. Пробой инициируют у поверхности поглощающей излучение таблетки, установленной на глухом торце трубки, оптически связанной окном в боковой стенке с импульсно-периодическим лазером. Недостаток этого способа состоит в том, что для его реализации требуется специальное устройство. Другой недостаток в том, что для калибровки требуется измерять скорость УВ, а по ней рассчитать амплитуду давления в предположении, что волна плоская. Но вследствие торможения газодинамического потока на стенке трубки при малом ее диаметре форма УВ будет искажаться, и отклоняться от плоской, что ведет к ошибкам калибровки. Далее измерение скорости УВ осуществляется времяпролетным методом, перемещением датчика на телескопической насадке при повторении лазерных импульсов. Это предъявляет повышенные требования к стабильности временных и энергетических параметров лазера. Недостатком является низкая производительность - чтобы прокалибровать один датчик, требуется несколько циклов работы установки.

Задачей изобретения является обеспечение возможности калибровки датчиков импульсного давления различных типов, упрощение и удешевление процесса калибровки, а также повышение его производительности.

Поставленная задача решается следующим образом. В способе калибровки датчиков импульсного давления, включающем сравнение показания калибруемого датчика с амплитудой давления воздействующей на него ударной волны, согласно предлагаемому техническому решению для воздействия используют сферическую ударную волну, генерированную лазерным пробоем воздуха, амплитуду которой рассчитывают аналитически.

Сущность предлагаемого изобретения поясняется чертежами, где:

на фиг.1 показана схема расположения калибруемого датчика, лазера - источника импульсного излучения, фокусирующей линзы и малоразмерной металлической мишени, у поверхности которой осуществляется оптический пробой;

на фиг.2 показаны результаты калибровки датчика импульсного давления, полученные предлагаемым способом.

Калибровка датчика импульсного давления согласно предлагаемому способу осуществляется следующим образом. Калибруемый датчик l, электрически соединенный с регистратором его сигналов (на фиг.1 не показан), фиксируется на заданном расстоянии R от места оптического пробоя воздуха. Расстояние R должно не менее, чем на порядок превышать радиус входного окна датчика. В этом случае расстояние от центра пробоя до края окна менее, чем на 0.5% превышает расстояние до его середины. Потому часть фронта УВ, попавшая внутрь датчика, мало отличается от плоскости. Вследствие этого кривизна фронта сферической УВ не приводит к искажению его показаний.

Пробой может быть осуществлен как в открытом воздухе, так и у поверхности твердотельной мишени. Однако пробой в открытом воздухе требует высоких значений плотности мощности фокусируемого излучения (qспособ калибровки датчиков импульсного давления, патент № 2469284 1011 Вт/см2), тогда как пробой у твердой поверхности требует меньших значений плотности мощности (qспособ калибровки датчиков импульсного давления, патент № 2469284 108 Вт/см2), и потому позволяет в широких пределах варьировать энергию инициирующих лазерных импульсов. Поэтому для наших целей приповерхностный пробой более предпочтителен. Импульс излучения лазера 2 фокусируется линзой 3 на поверхности металлической мишени малого размера 4 и инициирует приповерхностное плазмообразование, генерирующее УВ в воздухе. При этом выполняются условия практически полного поглощения лазерного излучения генерируемой плазмой - длительность лазерного импульса не превышает времени формирования УВ (~10-7 с), а плотность мощности в области фокуса qспособ калибровки датчиков импульсного давления, патент № 2469284 5·108 Вт/см2. В этом случае оптический пробой подобен взрыву, а УВ после удаления от места пробоя на расстояние, на порядок превышающее размер области фокуса, становится сферической и достигает в таком виде чувствительного элемента калибруемого датчика.

Датчик импульсного давления в результате воздействия на него ударной волны генерирует электрический сигнал, форма которого однозначно связана с временным профилем ударного пика. Соответствующая осциллограмма записывается регистратором. По ней определяют амплитуду сигнала способ калибровки датчиков импульсного давления, патент № 2469284 U, однозначно связанную с амплитудой давления способ калибровки датчиков импульсного давления, патент № 2469284 Р пришедшей ударной волны. Искомый коэффициент калибровки определяется соотношением:

способ калибровки датчиков импульсного давления, патент № 2469284

способ калибровки датчиков импульсного давления, патент № 2469284 Р рассчитывается по формуле Садовского с модифицированными коэффициентами. Исходная формула Садовского [5] получена в результате анализа экспериментальных данных по крупномасштабным взрывам зарядов тринитротолуола. Переписанная в форме, удобной для анализа лазерного взрыва, она имеет вид:

способ калибровки датчиков импульсного давления, патент № 2469284

где способ калибровки датчиков импульсного давления, патент № 2469284 Р - амплитуда давления в барах, Е - энергия лазерного импульса в Дж, R - радиус ударной волны в см. Ее коэффициенты равны:

способ калибровки датчиков импульсного давления, патент № 2469284

Однако формула (2) с коэффициентами (3) применительно к лазерному взрыву дает завышенные результаты [6]. В связи с этим для учета специфики лазерного взрыва потребовалась модификация коэффициентов соотношения (2). Модифицированные значения коэффициентов (2), найденные из анализа лазерных экспериментов с использованием метода наименьших квадратов [7], равны:

способ калибровки датчиков импульсного давления, патент № 2469284

С такими коэффициентами соотношение (2) вполне удовлетворительно описывает экспериментальные амплитудные зависимости лазерного взрыва. При этом погрешность аппроксимации экспериментальных данных (E=75 мДж) не превысила 6% [7]. Это позволяет для расчета коэффициента калибровки по (1) использовать формулу Садовского (2) с модифицированными коэффициентами (4)

В качестве примера применения предлагаемого способа калибровки на фиг.2 приведены результаты калибровки пьезоэлектрического датчика импульсного давления. Радиус входного окна датчика равен 5 мм. В качестве источника импульсного излучения использовалась лазерная установка в моноимпульсном режиме с длиной волны излучения 1.06 мкм, длительностью лазерного импульса способ калибровки датчиков импульсного давления, патент № 2469284 =74 нс и энергией 1.37 Дж. Излучение фокусировалось плосковыпуклой линзой с фокусным расстоянием 10 см на торец латунного стержня в пятно диаметром 3 мм, что обеспечивало достижение плотности мощности излучения 3·108 Вт/см2 в пятне лазерного облучения на мишени. Для регистрации ударной волны датчик 1 устанавливался перпендикулярно направлению лазерного излучения на оптической скамье, что позволяло варьировать расстояние от датчика до мишени в пределах от 1 до 80 см. Сигнал с датчика регистрировался электронным осциллографом Tektronix DPO 3034. Входное сопротивление осциллографа составляло 1 МОм. Калибровочный коэффициент рассчитывался по формуле (1) для R=60 см - его величина равна 0.137 бар/В.

На фиг.2 (расстояния R - в см, амплитуда давления ударной волны способ калибровки датчиков импульсного давления, патент № 2469284 Р - в барах) кривая 1 - прокалиброванные показания датчика, 2 - результаты расчетов по формуле (2) с модифицированными коэффициентами (4), 3 - результаты расчетов по формуле (2) с исходными коэффициентами (3), применительно к энергии используемых лазерных импульсов. Из фиг.2 видно, что калиброванные показания датчика хорошо согласуются с формулой (1) с модифицированными коэффициентами (4) для расстояний, начиная от 5 см и выше. При этом отклонение не превышает 9,5%. Отклонения, как видно из фиг.2, нарастают для расстояния менее 5 см по мере его уменьшения вследствие нарастания влияния кривизны фронта УВ. Это указывает на еще одно условие применимости предлагаемого способа калибровки, помимо перечисленных выше, - калибруемый датчик должен быть установлен так, чтобы расстояние от него до места пробоя, по крайней мере, в пять раз превышало поперечный размер его чувствительного элемента.

Таким образом, предложен способ калибровки датчиков импульсного давления, который обладает всеми достоинствами способов калибровки ударной волной с крутым фронтом и имеет ряд преимуществ по сравнению с известными. Его применение не требует никаких специальных устройств типа взрывных камер и ударных труб. Кроме того, сферическая УВ оказывает одинаковое воздействие на датчики, установленные на одинаковом расстоянии от места пробоя. Поэтому предлагаемый способ позволяет проводить калибровку и испытания единовременно нескольких датчиков разного типа с использованием единичного импульса лазерного излучения, энергия которого может быть измерена с высокой точностью. Т.е. предлагаемый способ калибровки предъявляет умеренные требования к стабильности временных и энергетических параметров лазера. При этом калибруемые датчики должны быть ориентированы радиально, навстречу приходящей сферической УВ, и установлены либо на одинаковом расстоянии от места пробоя, либо на разных, но так, чтобы датчики, установленные на меньших расстояниях, не искажали формы фронта УВ, идущей к удаленным датчикам. Каждый из калибруемых датчиков присоединяют к индивидуальному регистратору либо все датчики присоединяют к одному многоканальному регистратору. Т.о. предлагаемый способ калибровки обеспечивает повышение энергетической эффективности и производительности процесса калибровки. Он пожаро- и взрывобезопасен и одинаково пригоден для использования, как в лабораторных условиях, так и в условиях промышленного поточного производства.

Источники информации

1. Войтенко В.А. Маятниковый метод тарировки пьезодатчиков / В.А.Войтенко, Л.И.Кузнецов // ПТЭ. - 1992. - № 4. - С.189-191.

2. Федяков Е.М. Измерение переменных давлений / Е.М.Федяков, В.К.Колтаков, Е.Е.Багдатьев. - М.: Издательство стандартов, 1982. - 215 с.

3. Уиллмарт У. Миниатюрные датчики из титаната бария для аэродинамических и акустических измерений давления / У.Уилмарт // Ударные трубы: сборник / У.Уилмарт [и др.]; под ред. Х.А.Рахматуллина и С.С.Семенова. - М.: Издательство иностранной литературы, 1962. - С.364-373.

4. Устройство для калибровки датчиков импульсного давления: пат. 6749 Республики Беларусь, МПК7 G01L 27/00 / Ю.А.Чивель; заявитель ИМАФ НАН Беларуси. - № а20020620; заявл. 2002.07.16; опубл. 2004.09.09 // Афiцыйны бюл. / Вынаходствы, карысныя мадэлi, прамысловыя узоры. - 2004. - № 4. - С.182.

5. Садовский М.А. Геофизика и физика взрыва / М.А.Садовский. М., 1999.

6. Чумаков А.Н. Динамика ударной волны при лазерном приповерхностном пробое воздуха / А.Н.Чумаков, A.M.Петренко, Н.А.Босак // Инженерно-физический журнал. 2002. - Т.75. - № 3. - С.161-165.

7. Чумаков А.Н. Аналитическое представление радиальной зависимости амплитуды давления импульсного приповерхностного оптического разряда / А.Н.Чумаков, A.M.Петренко, Н.А.Босак // VII международный симпозиум по радиационной плазмодинамике. Сборник научных трудов. М.: 2006. - С.102-105.

Класс G01L27/00 Испытание и калибровка устройств для измерения давления текучей среды

устройство для тарировки измерительных приборов дифференциального давления -  патент 2504747 (20.01.2014)
устройство создания гидравлического давления -  патент 2498252 (10.11.2013)
способ задания давления в контролируемом объеме и установка для его осуществления -  патент 2495392 (10.10.2013)
устройство создания пневматического давления -  патент 2488788 (27.07.2013)
способ динамической градуировки датчиков давления -  патент 2480725 (27.04.2013)
способ стабилизации тонкопленочной нано- и микроэлектромеханической системы тензорезисторного датчика давления -  патент 2472127 (10.01.2013)
способ калибровки датчиков -  патент 2466369 (10.11.2012)
способ определения динамических характеристик тензометрического преобразователя давления (варианты) -  патент 2466368 (10.11.2012)
устройство для динамической тарировки датчиков импульсного давления -  патент 2461806 (20.09.2012)
пневматический источник низкого давления -  патент 2431817 (20.10.2011)
Наверх