способ гидродинамической томографии проницаемости пласта

Классы МПК:E21B49/00 Исследование структуры стенок скважины, исследование геологического строения пластов; способы или устройства для получения проб грунта или скважинной жидкости, специально предназначенные для бурения пород
G01N15/00 Исследование свойств частиц; определение проницаемости, пористости или площади поверхности пористых материалов
Автор(ы):
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ухтинский государственный технический университет" (RU)
Приоритеты:
подача заявки:
2012-05-22
публикация патента:

Изобретение относится к нефтяной и газовой промышленности в области контроля за разработкой нефтегазовых месторождений. Техническим результатом является получение достоверной информации о пространственном распределении переменной эффективной проницаемости, имеющей характер пропускной способности флюидов пласта под воздействием стационарного давления по площади. Способ включает создание стационарного аномального давления в выбранной скважине -источнике в интервале продуктивного пласта, веерную регистрацию интервального времени распространения установившегося режима давления в том же пласте до скважин приемников, распределенных по сети на площади месторождения, последовательное повторение веерной регистрация интервального времени распространения установившегося давления с использованием в качестве скважин источника аномального давления максимально большого числа скважин, участвующих в веерной регистрации, с последующей обработкой полученных двухиндексных данных интервального времени по томографической модификации методов интегральной геометрии, адаптированной к кинематическим уравнениям движения установившегося потока флюидов в неоднородной среде с использованием оптимизационных принципов.

Формула изобретения

Способ гидродинамической томографии проницаемого пласта, позволяющий определять пространственное распределение эффективной пропускной способности в межскважинной области в пределах продуктивного пласта нефтегазового месторождения по данным интервальных времен установления режима стационарного давления, включающий в себя создание стационарного аномального давления в выбранной скважине - источнике в интервале продуктивного пласта, веерную регистрацию интервального времени распространения установившегося режима давления в том же пласте до скважин приемников, распределенных по сети на площади месторождения, последовательное повторение веерной регистрация интервального времени распространения установившегося давления с использованием в качестве скважин источника аномального давления максимально большого числа скважин, участвующих в веерной регистрации, с последующей обработкой полученных двухиндексных данных интервального времени по томографической модификации методов интегральной геометрии, адаптированной к кинематическим уравнениям движения установившегося потока флюидов в неоднородной среде с использованием оптимизационных принципов.

Описание изобретения к патенту

Предлагаемое изобретение относится к нефтяной и газовой промышленности в области контроля за разработкой нефтегазовых месторождений и может быть использовано для мониторинга изменения пространственных характеристик пропускной способности продуктивного пласта.

В процессе эксплуатации месторождений пропускная способность пластов существенно изменяется за счет физико-химических процессов взаимодействия компонент входящих в состав флюидов (асфальтизация) пласта как изначальных, так и закачанных в пласт в процессе выполнения мероприятий по поддержанию пластового давления, а также за счет образования уплотненных низкопроницаемых зон, сформировавшихся за счет интенсивного воздействия на неныотоновские жидкости, к числу которых относится и нефть - вплоть до формирования застойных участков и полного купирования пропускной способности пласта, и вывода из эффективной эксплуатации значительных участки месторождения.

В настоящее время мониторинг динамики проницаемости пласта коллектора выполняется методами гидродинамического контроля, в частности гидропрослушивания [А. Чодри. Гидродинамические исследования нефтяных скважин / ООО Премиум Инжиниринг, 2011, 730 С.] путем нагнетания давления и последующего анализа характера его восстановления в локальной окрестности пласта с последующей интерполяцией результата такого исследования по всем скважинам в межскважинное пространство. В процессе интерполяции дополнительно используется имеющая геолого геофизическая информация [Паюнт РФ № 2092691, Е21В 47/00 опубликованный в БИ N 28, 1997] либо выполняется моделирования процесса многофазной фильтрации с использованием комплекса геолого-геофизических данных [Патент РФ № 2166630, Е21В 49/00, 43/16 опубликовано в Бюл. № 13, 2001]. Известен способ нахождения непроводящих элементов нефтяного пласта [Патент РФ № . 2229020, МКИ Е21В 43/00, 2002.] на основании анализа матрицы корреляций между данными объемов закачки воды и дебитов нефти и воды, а также его развитие [Патент РФ № 2298647, Е21В 47/10 (2006.01)], состоящее в закачке индикатора в нагнетательную скважину с последующем анализом траектории движения индикатора и оценки времени его движения. Этот путь и его аналоги не позволяет выявить локальные пространственные нарушения проницаемости пласта в межскважинной области, поскольку в используемых авторами исходных данных отсутствует информация о характере проницаемости во внутренней, межскважинной зоне пласта в пределах месторождения, достаточная для однозначного нахождения пространственного распределения коэффициента проницаемости. Вопрос о единственности нахождения проницаемости авторами замалчивается, и результаты расчетов в этой связи носят характер получения частной, субъективной модели.

В то же время получение такой, ранее недоступной информации о пространственном распределении неоднородной пропускной способности пласта исключительно важно для повышения коэффициента нефтеизвлечения, поскольку позволяет определить участки и направления технологических работ по декупированию застойных зон, и обеспечить включение в работу ранее оказавшиеся недоступные для извлечения продукта участков.

Полноценный прототип предлагаемого нами изобретения отсутствует, поскольку постановка задачи пространственного изучения неоднородного по проводимости относительно движения флюидов пласта в пределах всего месторождения считалась неразрешимой [К.С. Басниев Н.М. Дмитриев, Р.Д. Каневская, В.М. Максимов Подземнаягидромеханика. Москва - Ижевск, 2006, 487 С.] и является таковой с точки зрения классических постановок краевых задач для уравнений движения флюидов.

Возможность изучения пространственного изображения неоднородного (содержащего локальные минимумы и максимумы) распределения проницаемости пласта в пределах разбуренного участка месторождения в процессе его эксплуатации существует и основана на специализированной методике изучения интервальных времен распространения установившегося давления между парами скважин и современных информационных технологиях томографического типа. Использованию набора интервальных времен движения установившегося режима во всех допустимых для измерения парах скважин с последующей технологией построения пространственного изображения проницаемости пласта не обнаружено нами в патентной литературе.

Задача изобретения состоит в том, чтобы представить достоверную информацию о пространственном распределении переменной эффективной проницаемости имеющей характер пропускной способности флюидов пласта под воздействием стационарного давления по площади, с целью информационной поддержки технологических мероприятий по увеличению дебита месторождений путем ликвидации найденных зон пониженной проводимости либо полного купирования проницаемости, выводящего фрагменты месторождения из эксплуатации.

Этот набор действий и средств будем называть «Способ гидродинамической томографии проницаемого пласта», как томографии основанной на измерениях интервалов времен гидродинамической реакции в скважинах приемниках на гидродинамическое возбуждение в скважинах источниках в интервале изучаемого проницаемого пласта.

Способ гидродинамической томографии проницаемого пласта направлен на нахождение томографического изображения проницаемости пласта, основан на специализированном формировании томографического набора данных для распространения флюида в пласте и последующего построения изображения с использованием томографической модификации методов интегральной геометрии, адаптированной к кинематическим уравнениям движения установившегося потока флюидов в неоднородной среде с использованием оптимизационных принципов.

Основными элементами томографической модификации методов интегральной геометрии, адаптированной к кинематическим уравнениям движения установившегося потока флюидов в неоднородной среде с использованием оптимизационных принципов служат:

1. формирование кинематической модели движения установившегося потока флюидов в виде модели конечных элементов для функции скорости движения потока [Марчук Г.И. Методы вычислительной математики. Москва, Наука, Глав. Ред. Физ - Мат. Литературы, 1980 г., 534 С.];

2. моделирование интервальных времен движения установившегося режима движения флюидов по всем парам скважин источник - приемник месторождения на основе оптимизационных принципов [Болтянский В.Г. Математические методы оптимального управления. Москва. Наука. Главная редакция физ. - мат. лит. 1969 г. С.408.];

3. расчет невязки между реально измеренными и смоделированными интервальными временами;

4. решение обратной задачи интегральной геометрии [Некорректные задачи математической физики и анализа / М.М. Лаврентьев и др. - М.: Наука, 1980. - 286 с.] для рассчитанной невязки и нахождение поправки к изначальной модели;

5. контроль точности полученной модели и в случае больших погрешностей возвращение к п.2.

Способ гидродинамической томографии проницаемого пласта включает в себя следующие этапы:

1) создание стационарного аномального (положительного либо отрицательного в зависимости от условий эксплуатации месторождения) давления в скважине источнике аномального давления в интервале продуктивного пласта;

2) регистрацию времен распространения установившегося режима давления в том же пласте от скважины источника до всех скважин приемников распределенных по сети на площади месторождения образующих верную систему наблюдений;

3) последовательное повторение верной регистрации интервального времени распространения установившегося давления с использованием в качестве скважин источника аномального давления всех скважин, участвующих в веерной регистрации;

4) обработкой полученных двухиндексных данных интервального времени по томографической модификации методов интегральной геометрии, адаптированной к кинематическим уравнениям движения установившегося потока флюидов в неоднородной среде с использованием оптимизационных принципов.

Класс E21B49/00 Исследование структуры стенок скважины, исследование геологического строения пластов; способы или устройства для получения проб грунта или скважинной жидкости, специально предназначенные для бурения пород

способ гидродинамических исследований газонасыщенных пластов без выпуска газа на поверхность -  патент 2527089 (27.08.2014)
способ определения совместимости жидких производственных отходов с пластовой водой -  патент 2525560 (20.08.2014)
способ прогнозирования изменения свойств призабойной зоны пласта под воздействием бурового раствора -  патент 2525093 (10.08.2014)
способ определения застойных и слабодренируемых нефтяных зон в низкопроницаемых коллекторах -  патент 2524719 (10.08.2014)
способ и устройство для увеличения добычи в месторождении -  патент 2524367 (27.07.2014)
скважинные системы датчиков и соответствующие способы -  патент 2524100 (27.07.2014)
способ комплексной оценки состояния призабойной зоны пласта -  патент 2522579 (20.07.2014)
способ контроля за разработкой нефтяного месторождения -  патент 2522494 (20.07.2014)
способ определения обводненности продукции нефтедобывающей скважины -  патент 2520251 (20.06.2014)
способ определения нефтенасыщенных пластов -  патент 2517730 (27.05.2014)

Класс G01N15/00 Исследование свойств частиц; определение проницаемости, пористости или площади поверхности пористых материалов

способ автоматического контроля крупности дробленой руды в потоке -  патент 2529636 (27.09.2014)
способ измерения продольного и сдвигового импендансов жидкостей -  патент 2529634 (27.09.2014)
способ энергетической оценки воздействия на почву рабочих органов почвообрабатывающих машин и орудий -  патент 2528551 (20.09.2014)
способ определения свойств дисперсных материалов при взаимодействии с водой и поверхностно-активными веществами -  патент 2527702 (10.09.2014)
способ измерения пористости частиц сыпучих материалов -  патент 2527656 (10.09.2014)
способ и устройство для оптического измерения распределения размеров и концентраций дисперсных частиц в жидкостях и газах с использованием одноэлементных и матричных фотоприемников лазерного излучения -  патент 2525605 (20.08.2014)
способ определения совместимости жидких производственных отходов с пластовой водой -  патент 2525560 (20.08.2014)
способ прогнозирования изменения свойств призабойной зоны пласта под воздействием бурового раствора -  патент 2525093 (10.08.2014)
способ замеров параметров выхлопных газов двс -  патент 2525051 (10.08.2014)
способ определения застойных и слабодренируемых нефтяных зон в низкопроницаемых коллекторах -  патент 2524719 (10.08.2014)
Наверх