устройство определения сопротивления теплопередачи многослойной конструкции в реальных условиях эксплуатации

Классы МПК:G01N25/18 путем определения коэффициента теплопроводности
G01N25/72 обнаружение локальных дефектов
Автор(ы):, , , , , ,
Патентообладатель(и):Быстрова Наталья Альбертовна (RU),
Галкин Денис Игоревич (RU),
Абрамова Елена Вячеславовна (RU),
Голунов Сергей Владимирович (RU),
Будадин Олег Николаевич (RU),
Рябцев Сергей Леонидович (RU),
Вельдгрубе Алексей Владимирович (RU)
Приоритеты:
подача заявки:
2011-10-28
публикация патента:

Изобретение относится к области измерительной техники и может быть использовано для технической диагностики неоднородных конструкций. Устройство для определения сопротивления теплопередачи многослойной конструкции включает датчики температуры и теплового потока и тепловизионное устройство. Согласно изобретению включены счетчик времени измерения, блоки вычисления сопротивления теплопередачи, блок вычисления изменения сопротивления теплопередачи, блок сравнения изменения сопротивления теплопередачи и максимального изменения сопротивления теплопередачи, блок присвоения сопротивления теплопередачи, счетчик периодов времени и блок вычисления приведенного сопротивления теплопередачи. Технический результат - повышение точности результатов исследования. 1 з.п. ф-лы, 14 ил., 2 табл.

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

Формула изобретения

1. Устройство для определения сопротивления теплопередачи многослойной конструкции в реальных условиях эксплуатации, включающее датчики температуры и теплового потока и тепловизионное устройство, отличающееся тем, что

содержит счетчик времени измерения, блок вычисления сопротивления теплопередачи Ri, блок вычисления сопротивления теплопередачи Ri+1, блок вычисления изменения сопротивления теплопередачи устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 , блок сравнения изменения сопротивления теплопередачи устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 и максимального изменения сопротивления теплопередачи устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 max, блок присвоения сопротивления теплопередачи, счетчик периодов времени и блок вычисления приведенного сопротивления теплопередачи,

при этом выходы датчиков температуры и теплового потока подключены соответственно к первому и второму входам счетчика времени измерения и первым входам блоков вычисления сопротивления теплопередачи и Ri и Ri+1 , выходы блоков сопротивления теплопередачи Ri и R i+1 подключены к входам блока вычисления изменения сопротивления теплопередачи устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 , выход блока вычисления изменения сопротивления теплопередачи устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 подключен к входу блока сравнения изменения сопротивления теплопередачи, первый выход блока сравнения изменения сопротивления теплопередачи подключен к входу счетчика периодов времени, выход которого подключен к входу счетчика времени измерения, второй выход блока сравнения изменения сопротивления теплопередачи подключен одновременно к входу тепловизионного устройства и входу блока присвоения сопротивления теплопередачи, выход которого подключен к первому входу блока вычисления приведенного сопротивления теплопередачи, ко второму входу которого подключен выход тепловизионного устройства.

2. Устройство по п.1, отличающееся тем, что датчики температуры и теплового потока выполнены в виде контактных микропроцессорных преобразователей температуры и теплового потока соответственно.

Описание изобретения к патенту

Изобретение относится к области измерительной техники, в частности к тепловому неразрушающему контролю объектов, и может быть использовано для технической диагностики неоднородных конструкций, например зданий и сооружений по сопротивлению теплопроводности.

Из уровня техники известны способы теплового неразрушающего контроля неоднородных многослойных объектов, какими, в частности, являются здания и сооружения, см., например, патент РФ № 2219534. Для осуществления известного способа определяют временной интервал, необходимый для получения достоверного результата. В течение этого времени периодически измеряют температуру и плотность теплового потока на наружной и внутренней поверхностях объекта. Задают значение теплопроводности нужного слоя. Используя модель, определяют возможную температуру и плотность для каждого заданного значения теплопроводности. Проводят тепловизионное обследование, измеряют температуры внутренних и наружных поверхностей. Сравнивают теоретические и полученные измерением результаты. Выбирают для дальнейших расчетов значение теплопроводности из числа заданных, которое может обеспечить условия сравнения. Способ позволяет определить локальные сопротивления теплопередачи обследуемых участков и найти более рациональное решение по обеспечению требуемого сопротивления, если оно окажется не соответствующим нормативному.

В патенте Японии № 9113473 раскрыт способ теплового неразрушающего контроля материалов и определения местоположения дефектов, которые приводят к теплопотере. Согласно этому способу облучают участок исследуемой поверхности, измеряют теплопроводность материала, информацию о распределении температурного поля объекта передают для анализа на устройство термографического контроля и затем на устройство отображения, которое показывает изменения в распределении температурного поля.

Известен способ неразрушающего теплового контроля по патенту США № 5292195, согласно которому выбранное количество энергии подается на первый объект, имеющий известную поверхностную структуру. Изображение его запоминается. Затем выбранное количество энергии подается на второй объект и изображение второго объекта также запоминается. Затем производится сравнение изображений для определения различий в поверхностной структуре этих двух объектов.

Известен неразрушающий способ контроля неметаллических материалов по патенту Японии № 3154857 путем приложения импульсной температурной нагрузки. Временные изменения нестабильного температурного поля, соответствующие дефекту или повреждению, измеряют и анализируют с использованием инфракрасной камеры и вычислительной системы. Способ обеспечивает высокую точность.

В патенте США 6000844 описано портативное устройство для неразрушающего контроля материала и определения дефектов в его структуре. Средство отображения температурного поля следует на определенном расстоянии от теплового источника и вырабатывает видеоизображение температурных характеристик объекта. Дефекты материала продуцируют отклонения, которые перемещаются со случайной скоростью. Компьютер, усредняя данные по отношению к постоянной скорости, минимизирует шум и улучшает сигнал от дефектов.

В опубликованной заявке США № 2002126730 раскрыты система и способ определения поперечной температурной диффузии с использованием температурных импульсов. Разработана математическая модель и программное обеспечение, которые позволяют определить поперечную термодиффузию конечного объекта. Изобретение используется для установления и определения местоположения дефектов, ведущих к теплопотерям.

Все известные способы позволяют определить состояние конструкций и их теплопотери, однако они не применимы для исследования нестационарных процессов, имеющих место в реальных условиях эксплуатации зданий и сооружений.

В Российской Федерации на практике используется способ определения качества объектов по анализу их сопротивления теплопередачи - см. ГОСТ 26254-84. Здания и сооружения. Методы определения сопротивления теплопередачи ограждающих конструкций. Введен постановлением Государственного комитета СССР по делам строительства от 2 августа 1984 года № 127, УДК 624.01.001.006.354 [1]. Описанный здесь способ заключается в создании теплового потока через контролируемый объект, одномоментном измерении величины теплового потока (q) и температуры (Тн, Тв) на противоположных сторонах контролируемого объекта и определении качества объекта по его сопротивлению теплопередаче в соответствии с формулой.

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

Данный метод контроля прост, нагляден, имеет большую производительность. Однако имеет недостаток, который ограничивает область его применения и значительно снижает точность получаемых результатов. Он заключается в том, что в соответствии с классическим определением сопротивления теплопередачи метод применим только при условии стационарного процесса теплопередаче через контролируемый объект. Т.е. только при условии равенства потоков, входящих в объект на одной поверхности (qн) и выходящих (qв) из объекта на другой поверхности: qн=qв=q.

Устройство измерения сопротивления теплопередачи многослойной конструкции в реальных условиях эксплуатации, включающее контактные микропроцессорные преобразователи температуры (датчики температуры) и теплового потока (датчики теплового потока) и тепловизионное устройство, при этом входы датчиков температуры подключены к контролируемому объекту, а выходы - к входу блока вычисления, вход тепловизионного устройство оптически подключен к контролируемому объекту, а выход подключен к входу блока вычисления.

На практике эти условия практически никогда не соблюдаются. Например, при контроле строительных конструкций разница температуры наружного воздуха в ночное и дневное время достигает 10-15°С. Это вызывает нестационарные процессы теплопередачи в исследуемых конструкциях и делает метод неприменимым.

Решение этой проблемы предложено в монографии Будадин О.Н. и др. Тепловой неразрушающий контроль изделий. М., Наука, 2002, с.139-145 [2]. Оно заключается в решении обратной задачи нестационарной теплопроводности в многослойной среде. Метод универсален и в настоящее время находит широкое применение на практике. Однако широкое его применение сдерживается рядом недостатков, которые заключаются в следующем.

- Имеется существенная нелинейная зависимость точности получаемых результатов от погрешности входных данных - результатов первичных измерений. Это приводит к необходимости обеспечивать малые значения погрешности результатов первичных измерений, что требует применения специальных измерительных приборов, квалифицированных операторов и т.п. Помимо этого, требуется соблюдение специальных климатических условий при проведении измерений.

- Наличие ошибки входных данных может привести к случаю, когда обратная задача не сходится, т.е. будет отсутствовать решение.

- Решением обратной задачи, как правило, является не само сопротивление теплопередачи, а величина теплопроводности одного из слоев, обычно слоя с наименьшим сопротивлением теплопередачи - теплоизоляционного слоя, в результате решения обратной задачи в силу специфических особенностей математического аппарата и физических принципов получаются кроме основного решения (глобального минимума функции «невязки») несколько локальных минимумов (ложных решений). Это приводит к необходимости выбора нужного «истинного» решения на основе других дополнительных входных данных и др.

- Перед применением метода обратной задачи необходимо провести цикл трудоемких исследований корректности, единственности, сходимости и устойчивости решения.

- Известный способ имеет малую производительность контроля, т.к. априори неизвестно, какая протяженность временной истории обеспечивает необходимую достоверность. Поэтому при проведении контроля стараются получить максимально возможную протяженность временной истории (например, до 7-10 дней), что приводит к увеличению производительности. При этом если не обеспечить достаточную величину температурной истории, то это приводит к значительному снижению точности результатов.

Предлагаемый способ контроля и устройство для его осуществления направлены на устранение перечисленных недостатков. Технический результат, достигаемый при его использовании по сравнению с ближайшим аналогом - способом по патенту РФ № 2219534, заключается в повышении достоверности и производительности определения качества исследуемого объекта и расширении области применения.

Технический результат достигается за счет того, что в способе измерения сопротивления теплопередачи многослойной конструкции в нестационарных условиях теплопередачи, включающем тепловизионное обследование одной из поверхностей исследуемого объекта, сравнение теоретических и полученных измерением результатов и выбор для дальнейших расчетов значения теплопроводности из числа заданных, которое может обеспечить условия сравнения, последовательно измеряют значения температуры Tн(t ш), Tв(ti) на противоположных сторонах конструкции в области с координатами контура L(х, y) вблизи точки с координатами (х0, y0), с временными интервалами устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 тн и устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 тв соответственно в течение времени устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из и тепловой поток на внутренней стороне конструкции qв(tj) и наружной стороне конструкции на противоположной стороне qн(tj) с временными интервалами устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 и устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 соответственно, последовательно во времени в течение интервала времени устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из, при этом интервал времени измерения определяется следующим образом

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из={устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 0; ixустройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из},

где

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 0 - начальное время измерения,

i=1устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 М - номер интервала измерения,

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из - период интервала измерения,

М - наибольший номер интервала измерения,

- накапливают по каждому интервалу измерений устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из значения температуры Tн(t i), Tв(ti) на противоположных сторонах конструкции и значения теплового потока qв(tj ), qн(tj),

- определяют сопротивление теплопередачи Ri многослойной конструкции в точке контролируемого участка поверхности исследуемого объекта с координатами (х0, y0) для каждого интервала измерения:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

где N1=целое число от устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из/устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 тв,

N2=целое число от устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из/устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 тн,

N3=целое число от устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из/устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 ,

N4=целое число от устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из/устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 ,

- измеряют М следующим образом на основании определенных значений Ri:

[|(Ri+1-R1)/Ri+1|устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 max]устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 M=i+1;

где

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 max - предварительная заданная величина изменения R=R(i);

- величину сопротивления теплопередачи принимают равной:

R(x0, y0 )=RM(x0, y0),

- тепловизионное обследование проводят путем измерения температурного поля Т(х, y) поверхности с пространственным периодом (шагом) устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 а, определяемым размерами минимального дефекта конструкции:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

где устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 хдmin, устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 удmin - геометрические размеры минимального дефекта контролируемой конструкции,

и определяют термическое сопротивление по всей поверхности исследуемого объекта в произвольных координатах (x, y):

R(x,y)=а Т(х,y)+b,

где

a=[R(x 01,y01)-R(x02,y02)]/[Т(х 01,y01)-Т[(x02,y02)]

b=R(x01,y01)-аТ(х 0101).

Технический результат также достигается за счет того, что геометрические размеры минимального дефекта контролируемой конструкции устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 хдmin, устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 yдmin измеряют следующим образом:

- производят послойную препарацию образцов контролируемой конструкции,

- измеряют размеры всех дефектов, содержащихся в образце, выявленных в результате препарации: устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 xдi, устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 yдi,

- определяют размеры минимального дефекта контролируемой конструкции устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 хдmin, устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 yдmin, решая систему уравнений:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

где

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 - вероятность того, что (устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 хдi, устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 yдi)устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 (устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 хдmin, устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 yдmin)

p(устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 Xi) - функция распределения величин устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 хдi, устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 yдi.

Координаты контура на поверхности контролируемого объекта определяют следующим образом:

- измеряют разброс температурного поля по различным участкам исследуемой поверхности по результатам тепловизионного обследования с точностью, определяемой величиной изменения температуры устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 Тдеф, обусловленной минимальным дефектом конструкции,

- по результатам проведенных измерений определяют те участки поверхности L(x, y), в области которых выполняется условие:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

где

L (x, y) - контур области,

(x, y) - координаты контура области,

Тmах - наибольшая температура внутри области L(x, y),

Tmin - наименьшая температура внутри области L(x, y),

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 Тдеф - изменение температуры поверхности, обусловленной минимальным дефектом,

Dуч - размер участка L(x, y) по исследуемой поверхности,

Нконстр - толщина исследуемой конструкции,

Нконстр=Н12+устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663n,

n - количество слоев конструкции.

Оптимальный интервал последовательного измерения температуры (устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 тн) (устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 тв) и теплового потока (устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 q) на исследуемой конструкции определяют путем решения уравнения

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

f(T) - плотности распределения длительности во времени информационного сигнала,

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 - временной интервал измерения,

Р - вероятность пропуска информационного сигнала,

Т0 - временная разрешающая способность измерительных датчиков.

Температурные поля и тепловой поток измеряют с помощью измерителя-регистратора температуры серии ИС-203 и измерителя плотности тепловых потоков ИТП-МТ 4.03 «ПОТОК».

Координаты (х0, y0) определяют путем решения системы уравнений:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

Дополнительно проводят тепловизионное обследование наружной поверхности исследуемого объекта.

Технический результат также достигается за счет применения устройства для измерения сопротивления теплопередачи многослойной конструкции в реальных условиях эксплуатации, включающего датчики температуры и теплового потока и тепловизионное устройство, которое также содержит счетчик времени измерения, блок вычисления сопротивления теплопередачи Ri, блок вычисления сопротивления теплопередачи Ri+1, блок вычисления изменения сопротивления теплопередачи устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 , блок сравнения изменения сопротивления теплопередачи устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 и максимального изменения сопротивления теплопередачи устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 max, блок присвоения сопротивления теплопередачи, счетчик периодов времени и блок вычисления приведенного сопротивления теплопередачи, при этом выходы датчиков температуры и теплового потока подключены соответственно к первому и второму входам счетчика времени измерения и первым входам блоков вычисления сопротивления теплопередачи Ri и Ri+1, выходы блоков сопротивления теплопередачи R1 и Ri+1 подключены к входам блока вычисления изменения сопротивления теплопередачи устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 , выход блока вычисления изменения сопротивления теплопередачи устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 подключен к входу блока сравнения изменения сопротивления теплопередачи, первый выход блока сравнения изменения сопротивления теплопередачи подключен к входу счетчика периодов времени, выход которого подключен к входу счетчика времени измерения, второй выход блока сравнения изменения сопротивления теплопередачи подключен одновременно к входу тепловизионного устройства и входу блока присвоения сопротивления теплопередачи, выход которого подключен к первому входу блока вычисления приведенного сопротивления теплопередачи, ко второму входу которого подключен выход тепловизионного устройства.

Датчики температуры и теплового потока выполнены в виде контактных микропроцессорных преобразователей температуры и теплового потока соответственно.

Сущность изобретения и возможность достижения технического результата будут более понятны из последующего описания со ссылками на позиции чертежей.

На фиг.1 приведены фотографии конструкций с реальными дефектами в виде областей нарушения сплошности (расслоения).

На фиг.2 приведены, в качестве примера, гистограммы распределения размеров областей нарушения сплошности р(устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 xi). Таким образом, осуществляется измерение геометрических размеров минимального дефекта контролируемой конструкции устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 xдmin, устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 yдmin.

На фиг.3 приведена в качестве примера термограмма одной из поверхностей исследуемого объекта.

На фиг.4 приведена функциональная схема регистрации термограммы для измерения температурного поля Т(x, y).

На фиг.5 отмечен контур области L(x, y) на термограмме поверхности.

На фиг.6 приведена схема устройства контроля.

На фиг.7 приведен график реального изменения температуры с 26.04.2011 г. по 01.05.2011 г.

На фиг.8 приведен график модельного эксперимента зависимости термического сопротивления от времени интегрирования.

На фиг.9 приведен график модельного эксперимента зависимости погрешности определения термического сопротивления от времени интегрирования при отсутствии тренда, т.е. только при условии действия шумов.

На фиг.10 приведен график модельного эксперимента зависимости погрешности определения термического сопротивления от величины тренда температуры и времени интегрирования.

На фиг.11 приведен график модельного эксперимента зависимости погрешности определения термического сопротивления от времени интегрирования при наличии совокупного действия факторов: шумов и величины тренда.

На фиг.12 приведены реальные реализации во времени температуры на наружной и внутренней поверхностях многослойной конструкции.

На фиг.13 приведен состав конструкции на которой проводились экспериментальные исследования с теплотехническими и геометрическими характеристиками слоев.

На фиг.14 приведен экспериментальный график изменения сопротивления теплопередачи от величины i.

На фигурах приняты следующие обозначения:

1 - тепловизионная система,

2 - объект контроля - многослойная конструкция,

3 - поле обзора тепловизионной системы,

4 - мгновенное линейное поле зрения (геометрическая разрешающая способность) тепловизионной системы,

5 - контактные микропроцессорные преобразователи температуры (датчики температуры),

6 - контактные микропроцессорные преобразователи теплового потока (датчики теплового потока),

7 - счетчик времени измерения,

8 - блок вычисления сопротивления теплопередачи Ri,

9 - блок вычислений сопротивления теплопередачи Ri+1,

10 - блок вычисления изменения сопротивления теплопередачи устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 ,

11 - блок сравнения изменения сопротивления теплопередачи устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 и устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 max,

12 - блок присвоения сопротивления теплопередачи,

13 - счетчик периодов времени (i=i+1),

14 - блок вычисления приведенного сопротивления теплопередачи.

В качестве тепловизионной системы (1) используются тепловизоры фирмы FLIR, ИРТИС-2000 или аналогичные по техническим характеристикам.

В качестве контактных микропроцессорных преобразователей температуры (датчиков температуры - 5) и контактных микропроцессорных преобразователей теплового потока (датчиков теплового потока - 6) используются измерители плотности тепловых потоков и температуры 10устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 100-канальные по ГОСТ 25380.ИТП-МГ4.03/Х(1) «Поток»*, (ранее поставлялся как ИТП-МГ4.03-10 «Поток»)ИТП-МГ4.03/Х(П) «Поток»* (ранее поставлялся как ИТП-МГ4.03-100 «Поток»). Утвержден тип СИ. Внесен в Госреестр под № 42424-09 (фирма КБ «Стройприбор», г.Челябинск). Возможно использовать приборы других фирм с аналогичными техническими характеристиками.

Блоки: счетчик времени измерения - 7, блок вычисления сопротивления теплопередаче Ri. - 8, блок вычисления сопротивления теплопередачи Ri+1 - 9, блок вычисления изменения сопротивления теплопередачи устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 - 10, блок сравнения изменения сопротивления теплопередачи устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 и устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 max - 11, блок присвоения сопротивления теплопередачи - 12, счетчик периодов времени (i=i+1) - 13, блок вычисления приведенного сопротивления теплопередачи - 14, построены на основе стандартных микропроцессорных схем и микропроцессорных сборок с перепрограммируемыми запоминающими устройствами (см., например, Угрюмов Е.П. Цифровая схемотехника: учебн. пособие для вузов. - 3-е изд. перераб. и доп.- СПб.: - БХВ-Петербург, 2010).

Адеф - размеры минимального дефекта (геометрическая разрешающая способность),

S - расстояние от тепловизионной системы до объекта контроля,

L - толщина исследуемого слоя.

В качестве примера (фиг.3) приведена термограмма одной из поверхностей исследуемого объекта. Данная термограмма зарегистрирована с пространственным периодом (шагом - устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 а), определяемым размерами минимального дефекта конструкции:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

На основе данной термограммы измеряют температурное поле Т(x, y) исследуемой поверхности.

На фиг.4 приведена функциональная схема регистрации термограммы для измерения температурного поля Т(x, y). Регистрация осуществляется следующим образом.

Тепловизионная система размещается перед контролируемой поверхностью на расстоянии, обеспечивающем:

- во-первых, одновременное наблюдение максимальной площади контролируемой поверхности с учетом поля обзора тепловизионной системы,

- во-вторых, достоверную регистрацию минимального по размерам локального участка изменения температуры (возможного дефектного участка) поверхности контролируемой поверхности.

При этих условиях расстояние от тепловизионной системы до контролируемой поверхности определяется следующим образом:

Sустройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 Aдеф/(2Ntg(устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 /2)),

где S - расстояние от тепловизионной системы 6 до фурменной зоны 3,

Адеф - характерный размер участка с локальным изменением температуры (дефектный участок),

N - коэффициент, определяющий достоверность регистрации локального участка (обычно на практике принимают N=3-10),

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 - угол мгновенного линейного поля зрения оптической системы тепловизионного прибора 6 (угловая разрешающая способность. Обычно, на практике, устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 =5-10 угл. мин),

tg - тригонометрическая функция «тангенс».

По результатам измерения температурного поля Т(x, y) исследуемой поверхности измеряют разброс температурного поля по различным участкам исследуемой поверхности с точностью, определяемой величиной изменения температуры (устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 Тдеф), обусловленной минимальным дефектом конструкции, и температурного поля Т(x, y) исследуемой поверхности. Определяют координаты контура поверхности L(x, y), в области которых выполняется условие:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

где

L (x, y) - контур области,

(x, y) - координаты контура области,

Тmах - наибольшая температура внутри области L(x, y),

Tmin - наименьшая температура внутри области L(x, y),

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 Тдеф - изменение температуры поверхности, обусловленной минимальным дефектом,

Dуч - размер участка L(x, y) по исследуемой поверхности,

Нконстр - толщина исследуемой конструкции,

Нконстр=Н12+устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663n,

n - количество слоев конструкции,

Н1, Н2,устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 Нn - толщины слоев конструкции.

На фиг.5 отмечен контур области L(x, y). Координаты контура определяются, например, с использованием математических моделей построения по точкам и воспроизведения кривых.

Анализ формы объектов представляет собой одну из основных задач распознавания образов и имеет определенное значение для решения задач машинной графики в интерактивном режиме. Анализ формы оказывается полезным во всех случаях, когда требуется принять некоторое решение на основе формы наблюдаемых объектов.

Рассмотрим два подхода к распознаванию формы объектов.

При использовании первого подхода рассматриваем объект в целом и принимаем решение, исходя из его общей структуры.

При втором подходе исследуется контур силуэта: обычно определяются углы, выступы, впадины и другие точки с высокими значениями кривизны.

Дальнейший анализ контура проводится несколькими способами. Простейшая методология предусматривает получение несложного представления контура, например, в цепном коде. При использовании более развитой методологии контур аппроксимируется участками гладких кривых (например, В-сплайнами). Последнее предпочтительно в тех случаях, когда данные зашумлены, а также при использовании признаков, отражающих особенности значительной части контура. Первый подход более уместен при работе с данными, отличающимися низким уровнем шума, и использовании локальных признаков. Широкое применение аппроксимации многоугольниками объясняется не только связанной с ней возможностью обнаруживать максимумы кривизны, но и тем, что ее реализация оказывается проще реализации других методов построения кривых по точкам.

Отыскание кривой, проходящей через заданное множество точек, составляет задачу интерполирования, а отыскание кривой, проходящей вблизи заданного множества точек - задачу аппроксимации. Разработан метод, предусматривающий использование кусочно-полиномиальных функций различных типов. При решении задач аппроксимации уделяется внимание выбору критерия, характеризующего качество приближения.

Для решения поставленной задачи разработан метод интерполирования с помощью многочленов.

Пусть (х1, y1), (х2, у2 ), устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 , (хn, yn) - последовательность точек, заданных на плоскости, причем х=х при i=j. Для таких точек можно непосредственно написать формулу интерполяционного многочлена (n-1)-й степени:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

интерполяционный многочлен можно представить в более строгом виде:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

Из приведенного выражения следует, что значение у умножается на дробь, равную 1 при х=х и 0 при остальных значениях х, принимаемых им в заданных координатах. Частному случаю n=2 соответствует уравнение линии, соединяющей две точки:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

Следует отметить некоторые недостатки, присущие разработанному методу: существенные колебания, которые может претерпевать кривая, построенная между двумя точками. Однако достоинства метода - простота, достаточно простые формулы и т.п. перекрывают недостатки

Определяют геометрические координаты точки (х0, y0) области L(x, y) путем решения системы уравнении:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

В районе центра определенных участков L(х,у) с координатами (х0, у0) устанавливают на наружной и внутренней поверхностях датчики температуры и теплового потока, которые с определенным выше временным интервалом регистрируют и сохраняют в памяти значения температуры и теплового потока. При этом количество датчиков практически не ограничено.

На фиг.6 показана схема устройства, реализующего способ контроля.

На наружную и внутреннюю поверхности контролируемого изделия (2) устанавливаются датчики температуры и теплового потока (5, 6), которые последовательно измеряют значения температуры Tн(ti), Tв(ti) на противоположных сторонах конструкции в области с координатами контура L(x, y) вблизи точки с координатами (х0, y 0), с временными интервалами (устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 тн) и (устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 тв) соответственно в течение времени (устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из) и тепловой поток на внутренней стороне конструкции qв(tj) и наружной стороне конструкции на противоположной стороне qн(tj) с временными интервалами (устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 ) и (устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 ) соответственно, последовательно во времени в течение интервала времени (устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из), при этом интервал времени измерения определяется блоком (7) следующим образом

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из={устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 0; ixустройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из},

где

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 0 - начальное время измерения,

i=1устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 М - номер интервала измерения,

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из - период интервала измерения,

М - наибольший номер интервала измерения.

Датчики устанавливаются по всей выделенной области L(x, y) вблизи точки с координатами (х0, y0). В качестве примера некоторые реализации представлены на фиг.7. Под наружной поверхностью конструкции будем понимать поверхность, обращенную к внешней климатической среде. Измеренные значения температур и теплового потока поступают одновременно на счетчик времени измерения (7) и блоки (8, 9) вычисления сопротивления теплопередачи Ri и Ri+1.

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

где N1=(целое число) от устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из/устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 тв,

N2=(целое число) от устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из/устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 тн,

N3=(целое число) от устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из/устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 ,

N4=(целое число) от устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 из/устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 .

Одновременно на вторые входы блоков (8, 9) поступает сигнал от блока (7) о времени измерения (величина (i)). Вычисленные значения Ri и Ri+1 с выходов блоков (8, 9) поступают на вход блока (10) вычисления изменения сопротивления теплопередачи устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 . В блоке (11) осуществляется сравнение величины устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 с значением заранее заданной величины максимального изменения сопротивления теплопередачи устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 max. Если устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 max, то с первого выхода блока (11) поступает сигнал в блок (13) - счетчик периодов времени, где осуществляется наращивание периода регистрации (i=i+1). После этого вышеуказанные операции обработки блоками (7-11) повторяются. Если устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 max, то с второго выхода блока (11) поступает сигнал в блок (12) - присвоения сопротивления теплопередачи, где осуществляется операция R=RM.

Таким образом, блоками (10-13) осуществляется следующее.

Измеряют (М) следующим образом на основании определенных значений (Ri):

[|(Ri+1-R1 )/Ri+1|устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 max]устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 M=i+1;

где

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 max - предварительная заданная величина изменения R=R(i).

С выхода блока (12) значение величины (RM) сопротивления теплопередачи поступает в блок (14) - вычисления приведенного сопротивления теплопередачи. На второй вход блока (14) по сигналу на блок (1) со второго выхода блока (11) поступает сигнал с тепловизионной системы (1). В блоке (14) производится вычисление приведенного сопротивления теплопередачи:

R(x,y)=аТ(х,y)+b,

где

a=[R(x01,y01)-R(x 02,y02)]/[Т(х01,y01)-Т[(x 02,y02)]

b=R(x01,y 01)-аТ(х0101).

Проведем теоретическое обоснование предлагаемого способа измерения сопротивления теплопередачи многослойной конструкции в реальных условиях и устройства для его осуществления.

Как известно, температура на поверхности земли, а значит, на поверхностях, построенных на поверхности земли, изменяется в течение суток по периодическому закону (это следует из законов вращения Земли и вращения Солнца вокруг Земли). На фиг.7, например, приведен график изменения температуры с 26.04.2011 г. по 01.05.2011 г.

В идеальном случае, при отсутствии шумов, эти изменения можно представить следующей формулой:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

здесь:

Т0 - постоянное среднее значение температуры,

Т m - амплитуда колебания,

t - текущее значение времени,

Тсут - период суток (24 часа).

В реальных условиях, на поверхности земли на температуру влияет большое количество случайных шумов и помех (ветер, туман, облака и т.п.). Представив эти влияния как случайные воздействия, температуру на поверхности Земли можно записать в виде:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

здесь

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 (x(t)) - функция случайной величины, влияющая на температуру,

x - параметр, определяемый доверительной вероятностью. Аналогичный закон изменения может быть применен для описания величины теплового потока (Q) на поверхности конструкции на поверхности Земли:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

Как известно, термическое сопротивление (R) конструкции определяется формулой:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

где

Твн - температура на внутренней поверхности конструкции,

Т нар - температура на наружной поверхности конструкции,

q - величина теплового потока через конструкцию.

Данная формула выведена из условия стационарности процесса теплопередачи через конструкцию.

По определению, формула (4) выводится из решения стационарного дифференциального уравнения теплопередачи в материале.

Как известно, стационарность процесса теплопередачи определяется как условие прохождения через материал одинакового количества тепла через равные промежутки времени.

Таким образом, для того чтобы пользоваться формулой (4), необходимо определить тот интервал времени, в течение которого тепловой поток, а следовательно, и термическое сопротивление не будет изменяться.

В общем виде, это условие можно записать в виде выражения:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

Здесь устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 R - погрешность изменения термического сопротивления вследствие недостаточности стационарности процесса.

Решая неравенство (5) при известном значении устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 R относительно t0, определяется минимальный временной интервал, который обеспечивает стационарность процесса теплопередачи.

Рассмотрим пример использования (5) для определения «временного интервала стационарности» и термического сопротивления конструкции в реальных условиях эксплуатации.

Если предел интегрирования принять кратным суткам, т.е.

t0=nТсут ,

где n=1, 2, устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 N.

Подставляя в (5) значения (2) и (3), получим:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

Учитывая, что для наружных ограждающих конструкций температура на внутренней поверхности практически не изменяется, а при интегрировании случайной величины устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 (x(t)) в течение достаточно большого времени

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

то можно записать

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

На фиг.8 приведен график (8) модельного расчета (2), (3), (5). При расчетах предполагалось, что шумы имеют случайный характер и описываются нормальным законом распределения. Отношение сигнал/шум предполагалось больше 2, что соответствует реальным условиям (Тm/устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 шустройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 2). Т0вн=20°С, Т0нар=-4°С, q0=8 Вт/кв.м.

На фиг.9 приведен график модельного эксперимента зависимости погрешности определения термического сопротивления от времени интегрирования при отсутствии тренда, т.е. только при условии действия шумов.

Как видно из графика фиг.8, 9, в соответствие с результатами теоретических исследований величина термического сопротивления сходится к истинному значению и уже через 3 суток ошибка определения термического сопротивления не превышает 8%, что вполне приемлемо для практического использования.

Для практической реализации описанного выше способа достаточно измерять температурные истории последовательно в течение времени, увеличивая временной интервал, вычислять термическое сопротивление и принять за искомый результат то значение термического сопротивления, которое отличается от предыдущего значения на величину заранее заданной погрешности.

Рассмотрим влияние тренда изменения температуры на наружной поверхности и теплового потока.

Для этого представим (2) в виде

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

где коэффициенты а и b определяют величину тренда.

Для наглядности теоретических исследований положим, что между сутками средняя температура изменяется на величину устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 Тm, а величина теплового потока изменяется на величину устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 qm.

Для этих условий можно записать уравнения трендов температуры и теплового потока:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

Определим зависимость термического сопротивления от величины трендов температуры и теплового потока при условии, что величина шумов незначительна.

Подставляя (10) и (9) в (8) и производя интегрирование, получим:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

Т0вн=20°С, Т0нар =-4°С, q0=8 Bт/кв.м.

Результаты расчетов по формуле (11) приведены на фиг.10 - график модельного эксперимента зависимости погрешности определения термического сопротивления от величины тренда температуры и времени интегрирования.

Из фиг.10 видно, что величина тренда 2 град/сутки приводит к погрешности определения термического сопротивления не более 6%, что вполне приемлемо для практики.

При практическом использовании предлагаемого способа определения термического сопротивления необходимо определять оптимальное время регистрации температурных историй: с одной стороны, чем больше время, тем меньше влияние шумов и меньше погрешность определения термического сопротивления. С другой стороны, если имеется тренд температуры, то увеличение интервала времени ведет к увеличению погрешности.

Результаты теоретического моделирования погрешности определения термического сопротивления с учетом всех вышеуказанных факторов приведены на фиг.11 - график модельного эксперимента зависимости погрешности определения термического сопротивления от времени интегрирования при наличии совокупного действия факторов: шумов и величины тренда.

Анализ результатов, приведенных на фиг.11 позволяет сделать следующие выводы:

1. Погрешность определения термического сопротивления по предлагаемому способу не превышает 10%, что вполне приемлемо для практики.

2. Существует оптимальное время регистрации температурных историй (время проведения контроля). Это время по результатам теоретического моделирования лежит в диапазоне 2,5-4 суток. Оптимальность определялась по условию минимума погрешности определения термического сопротивления.

Проведено экспериментальное подтверждение эффективности предлагаемого способа измерения сопротивления теплопередачи многослойной конструкции в реальных условиях и устройства для его осуществления.

На фиг.12 приведены экспериментальные, полученные с реальной многослойной конструкции, временные истории (значения в различные последовательные моменты времени) температуры и теплового потока, замеренные на поверхности.

На фиг.13 приведен состав многослойной конструкции, на которой проводились экспериментальные исследования с теплотехническими и геометрическими характеристиками слоев.

Далее осуществляется регистрация температурного поля Т(x, y) с поверхности контролируемого объекта (фиг.3).

На фиг.14 приведен график изменения сопротивления теплопередачи от величины i.

В таблице 1 приведены сравнительные характеристики значения сопротивления теплопередачи в реперной зоне, определенные в соответствии с заявляемым способом, определенные в соответствии с прототипом и рассчитанные на основании конструкции стены (фиг.8). Также в таблице 1 приведена погрешность определения сопротивления теплопередачи (R) в соответствии с заявляемым способом, определенная в соответствии с прототипом, по сравнению с величиной, рассчитанной на основании конструкции стены по известной формуле:

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

где i - номер слоя многослойной конструкции,

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 - толщина i-го слоя,

устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 - теплопроводность материала i-го слоя,

Р - количество слоев.

Таблица 1


п/п
Способ определения величины сопротивления теплопередачиЗначения величины сопротивления теплопередачиПогрешность (%) относительно п.3Примечание
12 345
1Заявляемый сопособ 0,767% устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663
2 Способ, принятый в качестве прототипа 0,9229,6%устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663
3 Способ на основании прямого расчета по известным теплотехническим и геометрическим характеристикам конструкции 0,71устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663 устройство определения сопротивления теплопередачи многослойной   конструкции в реальных условиях эксплуатации, патент № 2512663

Результаты расширенного сравнения эксплуатационных и технических характеристик способов: заявляемого, принятого в качестве прототипа и принятого в качестве аналога, приведены в таблице 2.

Таблица 2
№ ппПараметр Численные значения параметра
Способ по предлагаемому изобретениюСпособ-ближайший аналогСпособ-аналог
12 34 5
1Определение сопротивления теплопередачиОперативный точный методПутем решения обратной задачи - метод трудоемкий и неоднозначный Контроль без учета нестационарности процесса -погрешность до 100%
2Погрешность результатов контроляНе более 7% (возможно снижение погрешности до 4%)До 30% (снижение погрешности практически невозможно) До 100% (снижение погрешности принципиально невозможно)
3Однозначность получаемых результатов контроляМетод обеспечивает единственность решения (результата)Возможны (вероятность 30%) вторичные решения - локальные минимумы Метод обеспечивает единственный результат, но с недопустимой погрешностью (100%)
4Допустимая погрешность входных данныхДо 15% До 5%До 5%
5Квалификация оператора Средняя и низкая (на уровне среднетехнического образования) Высокая (один из операторов - расчетчик должен иметь высшее об-

разование)
Не определяется
6 Производительность контроляВремя контроля - 2-3 день (включая время расчета, который может осуществляться в реальном времени контроля)Съем информации 3-7 дн. Расчет -1 деньНе определяется
7 Трудоемкость контроля2 чел. (съем информации и расчет)3 человека: 2 чел. - съем информации, 1 чел. - расчетНе определяется
8Достоверность определения показателя назначенияНе менее 0,99 (определяется погрешностью входных данных) 0,7-0,85 (определяется погрешностью входных данных, градиентом метода «невязки», наличием локальных минимумов и т.п.) Не определяется
9Вероятность отсутствия решения ОтсутствуетИмеется вследствие величины погрешности входных данных Не определяется
10 Вычислительные мощности и сложность математического аппарата НизкиеВысокая из-за необходимости решения обратной задачи нестационарной теплопроводности Не определяется

Подтверждено, что предлагаемый способ обеспечивает следующие технические преимущества перед его аналогами и прототипами:

- позволяет оперативно оценить качество контролируемых объектов, регистрировать это для оформления юридических документов (акта приемки-сдачи работ субподрядных организаций и т.д.) и последующего анализа причин несоответствия фактического состояния объектов их нормативным значениям и сокращает время ремонта, например, за счет сокращения сроков оперативного контроля качества ремонта и повышает качество ремонта за счет повышения ответственности исполнителя работы;

- значительно повышает (до 99%) достоверность результатов контроля технического состояния строительных объектов (выявления дефектов и энергоэффективность);

- снижает возможность аварий строительных конструкций (нет данных) за счет своевременного выявления дефектов;

- повышает надежность эксплуатации строительных объектов (с последующим выходом на определение остаточного ресурса и рекомендации по повышению надежности эксплуатации);

- повышает производительность контроля; время контроля - 2-3 дня (включая время расчета, который может осуществляться в реальном времени контроля);

- исключает субъективизм в результатах контроля, в т.ч. при проведении расчетов, которые осуществляются автоматически без участия операторов;

- обеспечивает прогрессивное развитие бесконтактных способов контроля и автоматизации выявления (диагностики) дефектов в строительных конструкциях.

Класс G01N25/18 путем определения коэффициента теплопроводности

способ определения теплозащитных свойств материалов и пакетов одежды -  патент 2527314 (27.08.2014)
способ измерения теплопроводности и теплового сопротивления строительной конструкции -  патент 2527128 (27.08.2014)
способ определения удельной теплоемкости материалов -  патент 2523090 (20.07.2014)
способ определения коэффициента теплопроводности наноструктурированного поверхностного слоя конструкционных материалов -  патент 2521139 (27.06.2014)
способ исследования нестационарного теплового режима твердого тела -  патент 2518224 (10.06.2014)
способ интеллектуального энергосбережения на основе инструментального многопараметрового мониторингового энергетического аудита и устройство для его осуществления -  патент 2516203 (20.05.2014)
способ определения теплопроводности керна -  патент 2503956 (10.01.2014)
способ определения температуропроводности твердого тела при нестационарном тепловом режиме -  патент 2502989 (27.12.2013)
способ определения теплопроводности сыпучих материалов при нестационарном тепловом режиме -  патент 2502988 (27.12.2013)
газоизмерительное устройство и способ его работы -  патент 2502066 (20.12.2013)

Класс G01N25/72 обнаружение локальных дефектов

способ измерения теплопроводности и теплового сопротивления строительной конструкции -  патент 2527128 (27.08.2014)
способ определения степени повреждения силосного корпуса элеватора из сборного железобетона -  патент 2525313 (10.08.2014)
способ теплового контроля герметичности крупногабаритного сосуда -  патент 2520952 (27.06.2014)
способ теплового нагружения обтекателей ракет из неметаллических материалов -  патент 2517790 (27.05.2014)
способ контроля качества неразъемных соединений -  патент 2515425 (10.05.2014)
способ активного одностороннего теплового контроля скрытых дефектов в твердых телах -  патент 2509300 (10.03.2014)
способ теплового контроля надежности конструкций из полимерных композиционных материалов по анализу внутренних напряжений и устройство для его осуществления -  патент 2506575 (10.02.2014)
термоэлектрический способ неразрушающего контроля качества поверхностного слоя металла -  патент 2498281 (10.11.2013)
способ управления промышленной безопасностью и диагностики эксплуатационного состояния промышленного объекта -  патент 2494434 (27.09.2013)
способ оценки газосодержания материалов с покрытиями -  патент 2481569 (10.05.2013)
Наверх