Соединения, содержащие карбоксильные группы, связанные с атомами углерода шестичленных ароматических колец – C07C 63/00

МПКРаздел CC07C07CC07C 63/00
Раздел C ХИМИЯ; МЕТАЛЛУРГИЯ
C07 Органическая химия
C07C Ациклические и карбоциклические соединения
C07C 63/00 Соединения, содержащие карбоксильные группы, связанные с атомами углерода шестичленных ароматических колец

C07C 63/04 .моноциклические монокарбоновые кислоты 
C07C 63/06 ..бензойная кислота 
C07C 63/08 ...ее соли 
C07C 63/10 ...ее галогенангидриды 
C07C 63/14 .моноциклические дикарбоновые кислоты 
C07C 63/15 ..со всеми карбоксильными группами, связанными с атомами углерода шестичленного ароматического кольца
C07C 63/16 ...1,2-бензолдикарбоновая кислота
C07C 63/20 ....ее соли
C07C 63/22 ....ее галогенангидриды
C07C 63/24 ...1,3-бензолдикарбоновая кислота
C07C 63/26 ...1,4-бензолдикарбоновая кислота
C07C 63/28 ....ее соли
C07C 63/30 ....ее галогенангидриды
C07C 63/307 .моноциклические трикарбоновые кислоты
C07C 63/313 .моноциклические кислоты, содержащие более трех карбоксильных групп
C07C 63/33 .полициклические кислоты
C07C 63/331 ..со всеми карбоксильными группами, связанными с неконденсированными кольцами
C07C 63/333 ...4,4"-дифенилдикарбоновые кислоты
C07C 63/337 ..с карбоксильными группами, связанными с конденсированными циклическими системами
C07C 63/34 ...содержащие два кольца
C07C 63/36 ....с одной карбоксильной группой
C07C 63/38 ....с двумя карбоксильными группами, каждая из которых связана с атомами углерода конденсированной циклической системы
C07C 63/40 ....с тремя или более карбоксильными группами, каждая из которых связана с атомами углерода конденсированной циклической системы
C07C 63/42 ...содержащие три или более кольца
C07C 63/44 ....с одной карбоксильной группой
C07C 63/46 ....с двумя карбоксильными группами, каждая из которых связана с атомами углерода конденсированной циклической системы
C07C 63/48 ....с тремя или более карбоксильными группами, каждая из которых связана с атомами углерода конденсированной циклической системы
C07C 63/49 ..содержащие циклы иные, чем шестичленные ароматические кольца
C07C 63/64 .одноядерные кислоты с ненасыщенными связями вне ароматического кольца
C07C 63/66 .многоядерные кислоты с ненасыщенными связями вне ароматических колец
C07C 63/68 .галогенсодержащие
C07C 63/70 ..монокарбоновые кислоты
C07C 63/72 ..поликарбоновые кислоты
C07C 63/74 ..с ненасыщенными связями вне ароматических колец

Патенты в данной категории

СПОСОБЫ, ПРОЦЕССЫ И СИСТЕМЫ ДЛЯ ОБРАБОТКИ И ОЧИСТКИ СЫРОЙ ТЕРЕФТАЛЕВОЙ КИСЛОТЫ И АССОЦИИРОВАННЫЕ ПОТОКИ ПРОЦЕССА

Изобретение относится к вариантам способа регенерации пара-толуиловой и терефталевой кислоты. Один из вариантов включает: получение потока маточного раствора, имеющего температуру от 140°С до 170°С под давлением от 3,5 бар до 8 бар, при этом поток маточного раствора представляет собой насыщенный раствор, включающий терефталевую кислоту и пара-толуиловую кислоту в воде и содержащий менее 1% вес./вес. мелких твердых частиц терефталевой кислоты; подачу потока маточного раствора в испарительный бак, давление в котором равно атмосферному давлению, и в котором из потока маточного раствора образуется пар, отводимый из испарительного бака; подачу потока маточного раствора в охлаждающее устройство по первой трубе, при этом в точке смешивания, до того как маточный раствор поступит в охлаждающее устройство, поток маточного раствора смешивают с вторичным потоком маточного раствора при температуре от 40°С до 60°С, в результате чего смесь потока маточного раствора и потока вторичного маточного раствора образует смесь маточного раствора, температура которой составляет от 60°С до 80°С после смешивания потока маточного раствора и потока вторичного маточного раствора, при этом до поступления в охлаждающее устройство часть терефталевой кислоты и пара-толуиловой кислоты осаждается из смеси маточного раствора; охлаждение смеси маточного раствора до температуры от 40°С до 60°С в охлаждающем устройстве; выведение смеси маточного раствора из охлаждающего устройства по направлению к фильтру; подачу первой порции смеси маточного раствора в фильтр; и подачу второй порции смеси маточного раствора, называемую вторичным потоком маточного раствора, в циркуляционную трубу, при этом циркуляционная труба пересекает первую трубу в точке смешивания. 2 н. и 11 з.п. ф-лы, 1 табл., 4 ил., 1 пр.

2527035
выдан:
опубликован: 27.08.2014
УЛУЧШЕННЫЙ СПОСОБ ФИЛЬТРОВАНИЯ ОЧИЩЕННОЙ КАРБОНОВОЙ КИСЛОТЫ

Изобретение относится к способам получения чистой терефталевой кислоты. Способ включает (a) удаление маточного раствора из очищенной терефталевой кислоты через фильтр с помощью газа, где газ включает пар; (b) очистку газа и (c) рециркуляцию газа, очищенного на стадии (b), назад на стадию (a), в котором концентрация пара находится в интервале от 50 вес.% до 99,9 вес.% от полного количества газа; стадию (b) очистки проводят в контактном устройстве газ-жидкость. Другой способ включает (a) окисление пара-ксилола с получением неочищенной терефталевой кислоты; (b) очистку неочищенной терефталевой кислоты с получением маточного раствора, включающего чистую терефталевую кислоту; (c) контактирование маточного раствора с фильтром; (d) удаление маточного раствора из очищенной терефталевой кислоты через фильтр с помощью газа, где газ включает пар; (e) очистку газа и (f) рециркуляцию газа, очищенного на стадии (e), назад на стадию (d), в котором концентрация пара находится в интервале от 50 вес.% до 99,9 вес.% от полного количества газа; стадию (e) проводят в контактном устройстве газ-жидкость. 2 н. и 31 з.п. ф-лы, 5 ил., 2 табл., 2 пр.

2525914
выдан:
опубликован: 20.08.2014
СПОСОБ ОКИСЛЕНИЯ АЛКИЛАРОМАТИЧЕСКИХ СОЕДИНЕНИЙ

Изобретение относится к способу и смеси для окисления алкилароматического соединения. Смесь включает: алкилароматическое соединение, растворитель, источник брома, катализатор и ацетат аммония; причем растворитель включает карбоновую кислоту, имеющую 1-7 атомов углерода, и необязательно воду, и катализатор по существу состоит из, по меньшей мере, одного металла, выбранного из кобальта, титана, марганца, хрома, меди, никеля, ванадия, железа, молибдена, олова, церия и циркония, присутствующего в форме ацетатов или их гидратов. Использование настоящего изобретения позволяет получать продукты более высокой чистоты для исключения или минимизации затрат на очистку. 2 н. и 8 з.п. ф-лы, 1 табл., 3 пр.

2524947
выдан:
опубликован: 10.08.2014
СПОСОБ ПРЕВРАЩЕНИЯ АРОМАТИЧЕСКИХ АЛЬДЕГИДОВ В АРОМАТИЧЕСКИЕ АЦИЛГАЛОГЕНИДЫ

Изобретение относится к способу превращения ароматического диальдегида или смеси ароматических диальдегидов в продукт реакции, который представляет собой ароматический ацилгалогенид или смесь ароматических ацилгалогенидов, в реакционной среде, которая не содержит ксилола, где указанный способ включает приведение ароматического диальдегида или смеси ароматических диальдегидов в контакт с галогеном для получения продукта реакции, причем реакционная смесь включает дополнительный растворитель, выбранный из группы, состоящей из любых ароматических ацилгалогенидов и их смесей. В частности, ароматический диальдегид является терефталевым альдегидом, ароматический ацилгалогенид является терефталоилдихлоридом, и галоген является хлором. Способ позволяет получать целевые продукты с высокими выходом и селективностью. 7 з.п. ф-лы, 10 пр.

2523798
выдан:
опубликован: 27.07.2014
КОМПОЗИЦИЯ ТЕРЕФТАЛЕВОЙ КИСЛОТЫ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ

Изобретение относится к усовершенствованному способу получения терефталевой кислоты, включающему a) взаимодействие 2,5-фурандикарбоновой кислоты, 2,5-фурандикарбоксилата или их смеси с этиленом в присутствии растворителя с образованием бициклического простого эфира при температуре в интервале от 100°C до 250°C и давлении в интервале примерно от 10 фунт/кв. дюйм (около 68,95 кПа) до 2000 фунт/кв. дюйм (около 13,79 МПа) и b) дегидратацию бициклического эфира. Способ обеспечивает эффективное получение терефталевой кислоты с уменьшенным количеством примесей, окрашенных примесей и оксидов углерода, которые образуются в промышленности при жидкофазном окислении метилзамещенных бензолов, или вообще без этих примесей. 15 з.п. ф-лы, 1 табл., 2 пр.

2519254
выдан:
опубликован: 10.06.2014
СПОСОБ И УСТАНОВКА ДЛЯ ПЕРЕРАБОТКИ ВОДОРОДА В УЗЛЕ ОЧИСТКИ УСТРОЙСТВА ДЛЯ ОЧИСТКИ ТЕРЕФТАЛЕВОЙ КИСЛОТЫ

Изобретение относится к способу переработки водорода в узле очистки устройства для очистки терефталевой кислоты. Способ осуществляют путем охлаждения и декомпрессии несконденсированных газов, выделяемых в ходе кристаллизации и мгновенного испарения, для удаления из них водяного пара и переработки водорода. Несконденсированные газы охлаждают и декомпрессируют, используя этапы, указанные в п.1 формулы изобретения. Также изобретение относится к установке, предназначенной для осуществления указанного способа. Установка содержит водородный компрессор и оборудование для снижения температуры и давления. Впускной канал оборудования для снижения температуры и давления соединен с выпускным каналом для несконденсированных газов группы кристаллизатора и его выпускной канал соединен с впускным каналом водородного компрессора; оборудование для снижения температуры и давления содержит группу нагревателя, первый ограничитель потока, второй теплообменник, второй ограничитель потока и третий теплообменник. Технический результат - снижение энергетических затрат при переработке водорода в узле очистки устройства для очистки терефталевой кислоты. 2 н. и 5 з.п. ф-лы, 1 ил.

2517524
выдан:
опубликован: 27.05.2014
КОНТЕЙНЕР ДЛЯ ПИЩЕВЫХ ПРОДУКТОВ ИЛИ НАПИТКОВ, СОДЕРЖАЩИЙ ПОЛИЭТИЛЕНТЕРЕФТАЛАТНЫЙ ПОЛИМЕР НА ОСНОВЕ БИОСЫРЬЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Настоящее изобретение относится к контейнеру для пищевых продуктов или напитков, содержащему полиэтилентерефталатный полимер. Описан контейнер для пищевых продуктов или напитков, содержащий полиэтилентерефталатный полимер, где указанный полимер содержит терефталатный компонент и диольный компонент, где терефталатный компонент выбран из терефталевой кислоты, диметилтерефталата, изофталевой кислоты и их комбинаций, и диольный компонент выбран из этиленгликоля, циклогександиметанола и их комбинаций, причем оба компонента - терефталатный и диольный, частично или полностью получены из, по меньшей мере, одного материала на основе биосырья. Технический результат - получение контейнера для пищевых продуктов или напитков, содержего полиэтилентерефталат, производимый из возобновляемых ресурсов, обладающий теми же свойствами что полиэтилентерефталат, полученный из нефти. 1 н. и 13 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

2513520
выдан:
опубликован: 20.04.2014
СПОСОБ УТИЛИЗАЦИИ ОТРАВЛЯЮЩЕГО ХЛОРСОДЕРЖАЩЕГО ВЕЩЕСТВА 2-(2-ХЛОРБЕНЗИЛИДЕН)МАЛОНОДИНИТРИЛА (CS)

Изобретение относится к способам уничтожения отравляющих веществ, а именно к утилизации отравляющего хлорсодержащего вещества 2-(2-хлорбензилиден)малонодинитрила (CS) с получением 2-хлорбензойной кислоты, являющейся товарным продуктом для синтеза различных органических соединений: пестицидов, красителе, лекарственных препаратов. Способ заключается в кипячении 2-(2-хлорбензилиден)малононитрила в водном растворе перманганата калия в течение 3-3,5 часов. Затем смесь выдерживают при комнатной температуре 14-16 часов, промывают полученный осадок горячей водой. Упаривают фильтрат, подкисляют 10-15% соляной кислотой, промывают осадок из фильтрата водой и перекристаллизовывают с получением 2-хлорбензойной кислоты. Изобретение позволяет исключить из технологического процесса токсичные реагенты и вредные выбросы в атмосферу. Способ является простым и экологически чистым. 2 пр.

2506978
выдан:
опубликован: 20.02.2014
СПОСОБ И СИСТЕМА СЕПАРАЦИИ И ФИЛЬТРАЦИИ НЕОБРАБОТАННОЙ ТЕРЕФТАЛЕВОЙ КИСЛОТЫ ДЛЯ ПОЛУЧЕНИЯ ОЧИЩЕННОЙ ТЕРЕФТАЛЕВОЙ КИСЛОТЫ

Изобретение относится к улучшенному способу сепарации и фильтрации необработанной терефталевой кислоты для получения очищенной терефталевой кислоты. Способ включает подачу суспензии неочищенной терефталевой кислоты в ротационный напорный фильтр для твердожидкостной сепарации с получением влажного отфильтрованного осадка, отфильтрованной остаточной жидкости, промывочной текучей среды и обезвоженного газа, подачу промывочной текучей среды и инертного газа, удаление примесей из части отфильтрованной остаточной жидкости и переработку оставшейся отфильтрованной остаточной жидкости. При этом перед удалением примесей из отфильтрованной остаточной жидкости вся отфильтрованная остаточная жидкость сначала проходит газожидкостную сепарацию для отделения газа, находящегося в ней. Газожидкостную сепарацию также проходят промывочная текучая среда и обезвоженный газ, причем влажный отфильтрованный осадок подается в осушитель для высушивания, и газы, образованные после газожидкостной сепарации отфильтрованной остаточной жидкости, промывочной текучей среды и обезвоженного газа централизованно конденсируются, затем газы, полученные после конденсации, перерабатываются в азот, необходимый для ротационного напорного фильтра, и жидкость, полученная после конденсации, а также отфильтрованная остаточная жидкость, не прошедшая процесс удаления примесей, перерабатываются вместе. Жидкости, полученные после соответствующей газожидкостной сепарации промывочной текучей среды и обезвоженного газа, также перерабатываются вместе с отфильтрованной остаточной жидкостью, не прошедшей процесс удаления примесей. Способ позволяет снизить расход воды и энергии, уменьшить рабочую нагрузку, связанную с удалением примесей. Изобретение также относится к системе сепарации и фильтрации неочищенной терефталевой кислоты для осуществления указанного способа. 2 н. и 2 з.п. ф-лы, 1 ил.

2505525
выдан:
опубликован: 27.01.2014
РЕАКТОР ОКИСЛЕНИЯ ПАРАКСИЛОЛА ДЛЯ ПОЛУЧЕНИЯ ТЕРЕФТАЛЕВОЙ КИСЛОТЫ

Изобретение относится к усовершенствованному реактору окисления параксилола для получения терефталевой кислоты, который содержит корпус реактора, при этом устройство ввода воздуха распределительного типа и устройство ввода воздуха циклонного типа расположены в нижней части корпуса реактора, устройство ввода воздуха распределительного типа содержит ряд трубок распределения воздуха и устройство циклонного ввода воздуха состоит из нескольких трубок циклонного ввода воздуха, расположенных ниже трубок распределения воздуха, при этом сегмент вывода воздуха указанных трубок циклонного ввода воздуха наклонен на 45-60° относительно радиуса корпуса резервуара. Применение комбинированного устройства ввода воздуха может заставить жидкость на дне реактора вращаться под давлением соответствующего количества воздуха, кроме того, реактор имеет хорошее рассеивание воздуха, таким образом, сохраняя материалы во взвешенном состоянии. 8 з.п. ф-лы, 2 ил.

2505524
выдан:
опубликован: 27.01.2014
СПОСОБ ПОЛУЧЕНИЯ ИЗОФТАЛЕВОЙ И МУРАВЬИНОЙ КИСЛОТ ОКИСЛЕНИЕМ м-ДИИЗОПРОПИЛБЕНЗОЛА И м-ЭТИЛ-ИЗОПРОПИЛБЕНЗОЛА

Изобретение относится к технологии органического и нефтехимического синтеза, конкретно - к технологии получения изофталевой кислоты (ИФК) и сопутствующего продукта - муравьиной кислоты (МК) жидкофазным окислением О2-газом в среде уксусной кислоты в присутствии катализатора солей Со и Mn при повышенной температуре и давлении с последующим выделением ИФК и ее очисткой перекристаллизацией в водно-уксусном растворителе, выделением МК методом дистилляции из обводненного уксуснокислою конденсата. образованного при охлаждении парогазовой смеси (ПГС). выводимой из зоны реакции с отработанным воздухом, где осуществляют окисление м-диизоиропилбензола или м-этил-, изоиропилбензола в три ступени с возрастанием по ступеням температуры в пределах (°С) 130-150; 140-160; 165-185°С, давления (МПа) 0,3-0,6: 0,6-0,8; 0,9-1,2. суммарной концентрации Со-Mn-Ni катализатора (ppm) 800÷1060, 1000÷1435, 1250÷1744 и при протоке воздуха через зоны окисления поддерживают концентрацию СО/СО 2 в отработанном газе, после каждой ступени в пределах (об.%) 0,16, 0,17, 0,18-0,25, 0,26/0,24. 0.25. 0,9-1,12, 1,19, 1,20, 1,21; 0,18, 0,2-0,3/0,9, 1,1-1,42; 0,2, 0,23-0,42/1,15. 1,2-1,6. 1,8 достигают содержания ИФК в продуктах окисления, выделенных из охлажденного оксидата 3-й ступени 93,2-98,8%, после чего техническую ИФК (тИФК) подвергают очистке методом последовательной перекристаллизации в СН3СООН при температуре нагрева суспензии до 180-200°С, затем в Н2О при температуре нагрева суспензии 200-230°С с получением высокочистой ИФК, а параллельно образующуюся в процессе окисления муравьиную кислоту выделяют из парогазовой смеси, выходящей из реактора окисления, путем охлаждения ПГС до 30-40°С, выделения образовавшегося конденсата (К) и его обработки н-бутилацетатом (Н-БАс) в соотношении К:Н-Бас=1:0,17, после чего методом ректификации из полученной смеси последовательно выделяют реакционную воду в виде ее азеотропной смеси с Н-Бас, затем муравьиную и уксусную кислоты. Способ позволяет получить два товарных продукта - ароматическую ИФК и алифатическую МК и повысить выход целевых продуктов. 2 з.п. ф-лы, 1 ил., 2 табл., 11 пр.

2485091
выдан:
опубликован: 20.06.2013
ПРОСТОЙ СПОСОБ И СИСТЕМА ЭФФЕКТИВНОГО ПОВТОРНОГО ИСПОЛЬЗОВАНИЯ МАТОЧНОГО РАСТВОРА ИЗ АППАРАТУРНОГО КОМПЛЕКСА ПРОИЗВОДСТВА ОЧИЩЕННОЙ ТЕРЕФТАЛЕВОЙ КИСЛОТЫ

Изобретение относится к усовершенствованному способу эффективного повторного использования рафинационного маточного раствора из аппаратурного комплекса производства очищенной терефталевой кислоты РТА, включающему в себя следующие стадии: (1) охлаждение рафинационного маточного раствора с применением способа теплообмена; (2) обработка охлажденного рафинационного маточного раствора посредством ультрафильтрации и повторное использование ультрафильтрационно сконцентрированного раствора для окислительной установки; (3) проведение ионообменной обработки фильтрата, полученного при ультрафильтрации: селективная адсорбция ионов Со и ионов Mn в фильтрате, повторное использование десорбционного раствора Со и Mn в качестве катализатора и последующая адсорбция ионов металлов, таких как ионы Fe, ионы Ni, ионы Na; и (4) применение раствора после ионного обмена в качестве эндотермической среды на стадии (1) для обмена теплом с рафинационным маточным раствором, при котором большую часть раствора направляют в пульверизационную сушилку башенного типа, а избыточную часть после теплообмена отбрасывают; раствор, пульверизированный в пульверизационной сушилке башенного типа, повторно используют в рафинационной системе. Изобретение также относится к системе для повторного использования рафинационного маточного раствора из аппаратурного комплекса производства очищенной терефталевой кислоты РТА, включающей в себя систему теплообмена, систему ультрафильтрации, систему ионного обмена и пульверизационную сушилку башенного типа, в которой система теплообмена включает в себя первую теплообменную установку и охлаждающее устройство; система ионного обмена включает в себя первую ионообменную установку и вторую ионообменную установку; выпуск тепловыделяющей среды из первого теплообменника соединяют с впуском тепловыделяющей среды в охлаждающее устройство; выпуск тепловыделяющей среды из охлаждающего устройства соединяют с впуском в систему ультрафильтрации; выпуск фильтрата из системы ультрафильтрации соединяют с впуском в первую ионообменную установку; выпуск из первой ионообменной установки соединяют с впуском во вторую ионообменную установку; выпуск из второй ионообменной установки соединяют с впуском эндотермической среды в первый теплообменник; и выпуск эндотермической среды из первого теплообменника соединяют с трубопроводом пульверизатора пульверизационной сушилки башенного типа. Способ имеет следующие преимущества: значительно упрощен процесс обработки; уменьшены капиталовложения и эксплуатационные расходы; снижено потребление энергии; способ помогает сохранять окружающую среду и экономить энергию, а также увеличивает экономические преимущества. 2 н. и 8 з.п. ф-лы, 2 ил., 1 пр.

2471767
выдан:
опубликован: 10.01.2013
СПОСОБ ПОЛУЧЕНИЯ АРОМАТИЧЕСКОЙ КАРБОНОВОЙ КИСЛОТЫ

Изобретение относится к способу получения ароматической карбоновой кислоты. Указанный способ включает окислительную стадию окисления алкилароматического соединения в присутствии соединения брома для получения ароматической карбоновой кислоты и стадию сжигания отходящего газа, образующегося на стадии окисления, в установке для сжигания. Причем после сжигания отходящего газа при температуре горения от 450 до 1000°С газ после сжигания охлаждают до 250°С или ниже, и время охлаждения от 450 до 250°С в процессе охлаждения не превышает 1 секунды. Использование настоящего способа позволяет ингибировать образование бромосодержащих диоксинов. 10 з.п. ф-лы, 1 табл., 4 пр., 3 ил.

2467998
выдан:
опубликован: 27.11.2012
СПОСОБ ЭТАНОЛИЗА ПОЛИ(ЭТИЛЕНТЕРЕФТАЛАТА) (ПЭТ) С ОБРАЗОВАНИЕМ ДИЭТИЛЕНТЕРЕФТАЛАТА

Изобретение касается способа переработки отходов полиэтилентерефталата. Способ включает этанолиз полиэтилентерефталата (PET), в котором сырье, содержащее PET, вводят в реакцию с этанолом. Выделяют этиленгликоль и ароматический сложный диэтиловый эфир, такой как диэтилизофталат и/или диэтилтерефталат. РЕТ или терполимер, содержащий мономер терефталата и мономеры этиленгликоля, вводят в реакцию с этанолом и выделяют этанол, диэтилтерефталат, этиленгликоль и необязательно диэтилизофталат. Выделенные диэтиловые компоненты можно подвергнуть жидкофазному окислению для получения ароматической карбоновой кислоты. Уксусную кислоту можно также получить жидкофазным окислением выделенных диэтиловых компонентов. Ароматическую карбоновую кислоту можно использовать для получения полимеров. В изобретении также описана аппаратура для переработки отходов полиэтилентерефталата. Аппаратура включает реактор для реакции, дистилляционную колонну, работающую на атмосферном давлении, и вакуумную дистилляционную колонну. 5 н. и 24 з.п. ф-лы, 1 ил., 8 табл, 8 пр.

2458946
выдан:
опубликован: 20.08.2012
СИСТЕМА ПОЛУЧЕНИЯ ПОЛИКАРБОНОВОЙ КИСЛОТЫ, ИСПОЛЬЗУЮЩАЯ ОХЛАЖДЕННЫЙ МАТОЧНЫЙ РАСТВОР ИЗ ОКИСЛИТЕЛЬНОГО СЖИГАНИЯ В КАЧЕСТВЕ ЗАГРУЗКИ СИСТЕМЫ ОЧИСТКИ ОТ ЗАГРЯЗНЕНИЙ

Изобретение относится к усовершенствованному способу получения композиции поликарбоновой кислоты, включающему: (а) проведение окисления многофазной реакционной среды, содержащей окисляемое исходное ароматическое соединение, растворитель и воду, в зоне первичного окисления с получением в результате исходной суспензии, содержащей сырую терефталевую кислоту; (b) проведение окислительного сжигания, по меньшей мере, части указанной исходной суспензии в зоне сжигания с получением в результате суспензии продукта сжигания, имеющей одну или более из следующих характеристик: (i) содержит менее чем 9000 частей на млн. изофталевой кислоты (ИФК); (ii) содержит менее чем 15000 частей на млн. бензойной кислоты (БК), (iii) содержит менее чем 64 части на млн. 4,4'-дикарбоксибифенила (4,4'-ДКБ), (iv) содержит менее чем 70 частей на млн. 2,6-дикарбоксифлуоренона (2,6-ДКФ), (v) содержит менее чем 12 частей на млн. 2,7-дикарбоксифлуоренона (2,7-ДКФ), (vi) содержит менее чем 12 частей на млн. 9-флуоренон-2-карбоновой кислоты (9Ф-2КК), (vii) содержит менее чем 4 части на млн. 4,4'-дикарбоксистильбена (4,4'-ДКС), (viii) содержит менее чем 6 частей на млн. 4,4'-дикарбоксиантрахинона (4,4'-ДКА); (с) охлаждение, по меньшей мере, части указанной суспензии продукта сжигания в зоне охлаждения с получением в результате охлажденной суспензии, содержащей охлажденные жидкую и твердую фазы; и (d) использование системы очистки растворителя для удаления, по меньшей мере, одной ароматической примеси, содержащей бензойную кислоту, пара-толуиловую кислоту, 4-карбокси-бензальдегид и/или тримеллитовую кислоту, присутствующей в загрузке очистки растворителя, введенной в указанную систему очистки растворителя, где указанная охлажденная жидкая фаза указанной охлажденной суспензии образует, по меньшей мере, 20% масс. указанной загрузки очистки растворителя. Изобретение относится также к другим вариантам способа получения композиции поликарбоновой кислоты. В изобретении раскрываются системы для более эффективного и экономичного получения поликарбоноваой кислоты, в частности терефталевой кислоты. 7 н. и 105 з.п. ф-лы, 30 ил., 4 табл.

2458907
выдан:
опубликован: 20.08.2012
СПОСОБ ПОЛУЧЕНИЯ И ОЧИСТКИ ИЗОФТАЛЕВОЙ КИСЛОТЫ

Изобретение относится к усовершенствованному способу получения и очистки изофталевой кислоты, заключающийся в ступенчатом окислении м-замещенных алкилбензолов кислородом воздуха в уксусной кислоте, в присутствии Co-Mn-Br катализатора при повышенной температуре и давлении с последующей очисткой образовавшейся ИФК методом перекристаллизации, в котором чистую ИФК получают окислением м-ксилола (или м-цимола) в две ступени в узких по ступеням (1, 2) пределах параметров: Т, °С - 191-194/194-195, при суммарной концентрации Co и Mn - 800-1200 ppm, соотношении Co:Mn=2,1-3,0:1, концентрация [H2O] в зонах окисления - 3,8-7,0/3,2-6,0% мас., [O2] в отработанном O2-газе 2-4,5% об. и в течение 30-50 мин достигают в продуктах окисления [м-КБА]=0,015-0,025% и показателя цветности 18°Н, после чего выделенную ИФК повышенного качества подвергают очистке методом перекристаллизации в воде при температуре 170-225°С, а при превышении вышеуказанных показателей по [м-КБА] и по цветности в условиях повышенной производительности путем увеличения нагрузки по м-ксилолу процесс очистки сочетают с гидрированием примесей на композитном катализаторе, состоящим из Ru и Pd в массовом соотношении Ru:Pd=1:0,25-1,5 при суммарной концентрации [Ru+Pd]=0,5% мас., в пористом материале на основе углеродистого носителя, активированного углерода или графитоподобного материала с общим объемом пор 0,6-0,8 см3/г, и гидрирование проводят 36-60 мин при 170-225°С. Технический результат - повышение эффективности получения и очистки, упрощение процесса. 1 з.п. ф-лы, 1 ил., 1 табл., 11 пр.

2458042
выдан:
опубликован: 10.08.2012
СПОСОБ ПОЛУЧЕНИЯ НЕОЧИЩЕННОЙ АРОМАТИЧЕСКОЙ ДИКАРБОНОВОЙ КИСЛОТЫ, ПРЕДНАЗНАЧЕННОЙ ДЛЯ ГИДРОГЕНИЗАЦИОННОЙ ОЧИСТКИ

Изобретение относится к усовершенствованному способу получения неочищенной терефталевой кислоты для применения на стадии гидрогенизационной очистки посредством проведения жидкофазного окисления кислородсодержащим газом в реакторе окисления, снабженном мешалкой, с использованием в качестве исходного материала пара-ксилола в растворителе - уксусной кислоте, в присутствии металлсодержащего катализатора, включающего кобальт (Co), марганец (Mn) и бром (Br) в качестве промотора окисления, где температуру реакции окисления регулируют так, что она находится в интервале от 185 до 197°С, среднее время пребывания в реакторе исходной смеси для жидкофазного окисления составляет от 0,7 до 1,5 часов, содержание воды в реакционном растворителе регулируют так, чтобы оно составляло от 8 до 15 мас.%, а состав катализатора в растворе регулируют в интервале содержания, определенного в зависимости от температуры реакции так, что он включает: (1) каталитически активный металл (Co+Mn) в количестве от 2650 част./млн. или менее и в количестве, равном или более величины, определяемой следующим отношением: (Co+Mn)=-0,460(t-185)3+18,4(t-185)2-277,5(t-185)+2065, в котором (Co+Mn) представляет собой содержание (Co+Mn) в част./млн., t представляет собой температуру реакции (°С) (интервал температур от 185 до 200°С), (2) массовое отношение Mn/Co регулируют в интервале от 0,2 до 1,5, предпочтительно от 0,2 до 1; (3) содержание Br составляет 1,7 или менее, если его представляют величиной Br/(Co+Mn) в виде массового отношения и в количестве, равном или более величины, представленной уравнением: Br/Mn=-0,00115(t-185) 3+0,0362(t-185)2-0,5803(t-185)+5,18, в котором Br/Mn представляет собой массовое отношение Br/Mn (мас./мас.), a t представляет собой температуру реакции (°С) (интервал температур от 185 до 200°С), и получение неочищенной терефталевой кислоты осуществляют с содержанием 4-карбоксибензальдегида в количестве от 2000 до 3500 част./млн. в качестве промежуточного продукта реакции жидкофазного окисления. В способе предложены экономичное получение неочищенной терефталевой кислоты для применения в гидрогенизационной очистке и использование регулируемого количества катализатора окисления, не оказывающего нежелательного воздействия на продолжительность работы катализатора гидрогенизационной очистки, а также условия проведения соответствующей реакции. Получение терефталевой кислоты при жидкофазном окислении соответствующего диалкилированного ароматического углеводорода с применением растворителя, уксусной кислоты, осуществляли путем снижения окисленного количества уксусной кислоты, потерянной при окислении, ограничения образования золы в полученной терефталевой кислоте и обеспечения регулирования состава катализатора окисления в зависимости от температуры реакции. 12 табл., 7 ил., 15 пр.

2458038
выдан:
опубликован: 10.08.2012
СИСТЕМА ОКИСЛЕНИЯ С ВТОРИЧНЫМ РЕАКТОРОМ ДЛЯ БОКОВОЙ ФРАКЦИИ

Изобретение относится к усовершенствованному способу получения композиции ароматической дикарбоновой кислоты, включающему (а) проведение окисления многофазной реакционной среды в реакторе первичного окисления с получением в результате первой суспензии; (b) проведение дополнительного окисления, по меньшей мере, части указанной первой суспензии в реакторе вторичного окисления, где указанный реактор вторичного окисления представляет собой реактор по типу барботажной колонны, причем способ дополнительно включает введение ароматического соединения в указанный реактор первичного окисления, где, по меньшей мере, приблизительно 80% мас. указанного ароматического соединения, введенного в указанный реактор первичного окисления, окисляется в указанном реакторе первичного окисления, причем головные газы перемещают из верха реактора вторичного окисления в реактор первичного окисления. Раскрыты оптимизированный процесс и оборудование для более эффективного и экономичного проведения жидкофазного окисления. Такое жидкофазное окисление проводят в реакторе по типу барботажной колонны, которая обеспечивает высокоэффективную реакцию при относительно низких температурах. Когда окисленное соединение представляет собой пара-ксилол и продуктом реакции окисления является сырая терефталевая кислота (СТК), такой продукт, СТК, может быть очищен и выделен с помощью более экономичных методик, чем когда СТК получена с помощью обычного процесса высокотемпературного окисления. 2 н. и 28 з.п. ф-лы, 4 табл., 31 ил.

2457197
выдан:
опубликован: 27.07.2012
СПОСОБ И УСТРОЙСТВО ДЛЯ ПРОИЗВОДСТВА АРОМАТИЧЕСКИХ КАРБОНОВЫХ КИСЛОТ (ВАРИАНТЫ)

Изобретение относится к усовершенствованным способам производства ароматических карбоновых кислот, включающим контактирование сырья, содержащего по меньшей мере один исходный замещенный ароматический углеводород, заместители которого способны окисляться до групп карбоновой кислоты, с газообразным кислородом в реакционной смеси жидкофазного окисления, содержащей монокарбоновую кислоту в качестве растворителя и воду, в присутствии каталитической композиции, содержащей по меньшей мере один тяжелый металл, эффективный для катализации окисления замещенного ароматического углеводорода до ароматической карбоновой кислоты, в секции реакции при повышенной температуре и давлении, эффективных для поддержания в жидком состоянии реакционной смеси жидкофазного окисления и образования ароматической карбоновой кислоты и примесей, содержащих побочные продукты окисления исходного ароматического углеводорода, растворенные или суспендированные в реакционной смеси жидкофазного окисления, и паровой фазы высокого давления, содержащей растворитель - монокарбоновую кислоту, воду и небольшие количества исходного ароматического углеводорода и побочных продуктов; перенос паровой фазы высокого давления, отведенной из секции реакции в секцию разделения, орошаемую жидкой флегмой, содержащей воду и способную практически полностью разделить растворитель - монокарбоновую кислоту и воду в паровой фазе высокого давления с образованием жидкости, обогащенной растворителем - монокарбоновой кислотой и обедненной водой, и газа высокого давления, содержащего водяной пар; перенос газа высокого давления, содержащего водяной пар, отведенного из секции разделения, без обработки для удаления органических примесей в секцию конденсации и конденсацию газа высокого давления с образованием жидкого конденсата, содержащего воду, и отходящего газа из секции конденсации под давлением, содержащего неконденсируемые компоненты газа высокого давления, перенесенного в секцию конденсации; выделение из секции конденсации жидкого конденсата, содержащего воду и пригодного для использования без дополнительной обработки в качестве по меньшей мере одной жидкости, содержащей воду, в способе очистки ароматических карбоновых кислот; и подачу жидкого конденсата, содержащего воду, выделенного в секции конденсации, в процесс очистки ароматической карбоновой кислоты, в котором по меньшей мере одна стадия включает: (а) приготовление реакционного раствора очистки, содержащего ароматическую карбоновую кислоту и примеси, растворенные или суспендированные в жидкости, содержащей воду; (b) контактирование реакционного раствора очистки, содержащего ароматическую карбоновую кислоту и примеси в жидкости, содержащей воду, при повышенных температуре и давлении с водородом в присутствии катализатора гидрирования с образованием жидкой реакционной смеси очистки; (с) выделение твердого очищенного продукта, содержащего карбоновую кислоту, из жидкой реакционной смеси очистки, содержащей ароматическую карбоновую кислоту и примеси в жидкости, содержащей воду; и (d) промывку по меньшей мере одной жидкостью, содержащей воду, полученной очищенной твердой ароматической карбоновой кислоты, выделенной из жидкой реакционной смеси очистки, содержащей ароматическую карбоновую кислоту, примеси жидкость, содержащую воду; так что жидкость, содержащая воду, по меньшей мере на одной стадии способа очистки включает жидкий конденсат, содержащий воду и не требующий обработки по удалению органических примесей. Изобретение также относится к устройствам для производства ароматических карбоновых кислот. 5 н. и 39 з.п. ф-лы, 2 ил.

2449980
выдан:
опубликован: 10.05.2012
СПОСОБЫ СУШКИ АРОМАТИЧЕСКОЙ КАРБОНОВОЙ КИСЛОТЫ И СПОСОБЫ ПОЛУЧЕНИЯ СУХОЙ АРОМАТИЧЕСКОЙ КАРБОНОВОЙ КИСЛОТЫ

Изобретение относится к усовершенствованному способу сушки ароматической карбоновой кислоты, включающему непрерывную сушку осадка ароматической карбоновой кислоты с помощью сушилки с псевдоожиженным слоем, причем осадок вводят в сушилку при скорости 50 кг/час или выше, и сушильный газ, имеющий температуру 80-160°С, подают в сушилку при приведенной скорости 0,3-1 м/сек, с тем, чтобы содержание жидкости в осадке составило 14% по массе или ниже; а также к усовершенствованному способу получения сухой ароматической карбоновой кислоты, включающему непрерывную сушку осадка ароматической карбоновой кислоты с помощью сушилки с псевдоожиженным слоем с получением готовой ароматической карбоновой кислоты, где осадок вводят в сушилку при скорости 50 кг/час или выше, и сушильный газ, имеющий температуру 80-160°С, подают в сушилку при приведенной скорости 0,3-1 м/сек, с тем, чтобы содержание жидкости в осадке составило 14% по массе или ниже. Целью изобретения является разработка способа сушки ароматической карбоновой кислоты и способа получения сухой ароматической карбоновой кислоты, в каждом из которых решены проблемы, связанные с применением сушилки с псевдоожиженным слоем, такие как забивка кристаллами или прилипание кристаллов ароматической карбоновой кислоты в сушилке, и со снижением эффективности сушки. В результате чего может быть обеспечена стабильная работа сушилки с псевдоожиженным слоем. 2 н. и 6 з.п. ф-лы, 5 ил., 1 табл., 3 пр.

2444510
выдан:
опубликован: 10.03.2012
НОВЫЕ ЛИГАНДЫ, МОДУЛИРУЮЩИЕ RAR РЕЦЕПТОРЫ, И ИХ ПРИМЕНЕНИЕ В МЕДИЦИНЕ И В КОСМЕТИЧЕСКИХ ИЗДЕЛИЯХ

Настоящее изобретение относится к новым соединениям приведенной ниже общей формулы (I), физиологически приемлемым солям соединений формулы (I), когда R3 означает атом водорода, а также геометрическим изомерам соединений формулы (I), обладающим ингибирующей активностью в отношении RAR рецепторов ( , , ), к их применению для получения фармацевтических композиций и к фармацевтическим композициям на их основе

2440973
выдан:
опубликован: 27.01.2012
СПОСОБ ВОЗВРАТА ЭНЕРГИИ В ПРОЦЕССЕ ПРОИЗВОДСТВА АРОМАТИЧЕСКИХ КАРБОНОВЫХ КИСЛОТ

Изобретение относится к усовершенствованному способу утилизации энергии при получении ароматических карбоновых кислот жидкофазным окислением ароматических углеводородов, при котором в верхней части реактора образуется пар, содержащий растворитель реакции и воду, способ включает стадии: а) высокоэффективное разделение пара из верхней части реактора с образованием по меньшей мере газового потока высокого давления, содержащего воду и органические примеси; b) утилизацию тепла газового потока высокого давления путем теплообмена с теплопоглотителем, при котором образуется конденсат, содержащий примерно 20-60 мас.% воды, присутствующей в газовом потоке высокого давления, и отходящий газ высокого давления, содержащий примерно 40-80 мас.% воды, присутствующей в газовом потоке высокого давления, остается неконденсированным, и температура или давление теплопоглотителя повышается; и с) расширение отходящего газа высокого давления, неконденсированного на стадии (b), содержащего примерно 40-80 мас.% воды, присутствующей в газовом потоке высокого давления для утилизации энергии отходящего газа высокого давления в виде работы; и d) направление теплопоглотителя, температура и давление которого повышаются на стадии (с), на другую стадию способа для нагревания или использования вне способа. Изобретение относится также к способу получения ароматических карбоновых кислот с утилизацией энергии и к устройству для утилизации энергии. Изобретение позволяет значительно снизить энергозатраты при производстве ароматических карбоновых кислот. 3 н. и 13 з.п. ф-лы, 3 ил.

2435754
выдан:
опубликован: 10.12.2011
ОПТИМИЗИРОВАННОЕ ЖИДКОФАЗНОЕ ОКИСЛЕНИЕ

Изобретение относится к усовершенствованному непрерывному способу получения терефталевой кислоты, включающему (а) подачу пара-ксилола в реактор окисления; (b) окисление, по меньшей мере, части упомянутого пара-ксилола в жидкой фазе многофазной реакционной среды, содержащейся в упомянутом реакторе окисления, до получения таким образом сырой неочищенной терефталевой кислоты, где упомянутое окисление приводит к получению диоксида углерода, монооксида углерода и/или метилацетата; и выдерживание во время упомянутого окисления соотношения между молями полученных оксидов углерода и молями подаваемого упомянутого пара-ксилола в диапазоне от 0,02:1 до 0,24:1. Изобретение относится также к непрерывному способу получения терефталевой кислоты, включающему (а) подачу пара-ксилола в реактор окисления; (b) окисление, по меньшей мере, части упомянутого пара-ксилола в жидкой фазе многофазной реакционной среды, содержащейся в упомянутом реакторе окисления, до получения таким образом сырой неочищенной терефталевой кислоты; и (с) выдерживание во время упомянутого окисления молярной доли выживания упомянутого пара-ксилола в диапазоне от 99,0 до 99,7 процента. Способы предназначены для более эффективного и экономичного проведения жидкофазного окисления окисляемого соединения. 2 н. и 31 з.п. ф-лы, 35 ил., 7 табл.

2435753
выдан:
опубликован: 10.12.2011
СПОСОБ ОБРАБОТКИ И ИЗВЛЕЧЕНИЯ ЭНЕРГИИ ОТРАБОТАННОГО ГАЗА РЕАКЦИИ ОКИСЛЕНИЯ

Изобретение относится к способу обработки отработанного газа реакции окисления при производстве ароматической дикарбоновой кислоты путем жидкофазного окисления ароматического диалкилового углеводорода, взятого в качестве исходного вещества, с использованием в качестве растворителя уксусной кислоты, в присутствии металлического катализатора, содержащего в качестве промотора кобальт, марганец и бром, при температуре в реакторе для окисления в пределах от 185 до 205°С и с использованием кислородсодержащего газа, и включающему стадии, на которых охлаждают отработанный газ реакции окисления, отходящий от реактора для окисления, и отделяют, после конденсации, конденсирующиеся компоненты отработанного газа реакции окисления при высоком давлении, осуществляют мокрую очистку полученного отработанного газа при 40°С или ниже в абсорбционных колоннах высокого давления промывочной жидкостью в две стадии уксусной кислотой и затем водой, и снижают концентрации содержащихся в нем компонентов, и последовательно пропускают указанный обработанный газ реакции окисления с давлением 12,0-16,0 кг/см2 (изб.) через турбины двух ступеней давления после нагрева этого газа, соответственно подаваемого в первую и вторую ступени турбины, паром с давлением примерно 5 кг/см2 (изб.) до температуры от 140°С до 150°С, причем используют двухступенчатые турбины с отношением энергии, полученной во второй ступени, к энергии, полученной в первой ступени, в пределе от 1 до 1,4, и получают энергию за счет тепла и давления отработанного газа при условии проведения вышеупомянутых шагов с соблюдением нижеприведенной формулы, так что не допускаются температура и давление для достижения точки росы на каждом из выходов двух ступеней турбин: (T2/T1) =(P2/P1)( -1), где у=Cp/Cv=1,4, T1, P1 - температура и давление на стороне входа, Т2, Р2 - температура и давление на стороне выхода, - отношение удельной теплоемкости при постоянном давлении Ср к удельной теплоемкости при постоянном объеме Cv. Настоящий способ представляет собой эффективную систему обработки отработанного газа в сочетании с технологическим процессом получения ароматической дикарбоновой кислоты. 5 з.п. ф-лы, 9 табл., 3 ил.

2434841
выдан:
опубликован: 27.11.2011
СПОСОБ КАТАЛИТИЧЕСКОГО ПИРОЛИЗА ОТХОДОВ ПОЛИЭТИЛЕНТЕРЕФТАЛАТА С ПОЛУЧЕНИЕМ БЕНЗОЙНОЙ КИСЛОТЫ

Изобретение относится к способу каталитического пиролиза отходов полиэтилентерефталата с получением бензойной кислоты. Способ включает нагрев смеси измельченных отходов полиэтилентерефталата и катализатора, конденсацию образующейся бензойной кислоты и ее последующее выделение. Нагрев осуществляют при атмосферном давлении, без доступа кислорода воздуха, при температуре 250-350°С в течение 1 часа 20 минут. В качестве катализатора используют ацетилацетонатный комплекс железа(III). Технический результат - утилизация отходов полиэтилентерефталата, позволяющая улучшить экологическую обстановку в регионе, получение бензойной кислоты, снижения энергетических затрат за счет снижение температуры пиролиза полиэтилентерефталата. 1 з.п. ф-лы, 1 табл., 1 ил.

2433115
выдан:
опубликован: 10.11.2011
СПОСОБ ПОЛУЧЕНИЯ ЧИСТОЙ ИЗОФТАЛЕВОЙ КИСЛОТЫ И СОПУТСТВУЮЩИХ ПРОДУКТОВ ИЗ КСИЛОЛЬНЫХ ФРАКЦИЙ

Настоящее изобретение относится к нефтехимическому органическому синтезу, а именно к способу получения изофталевой кислоты (ИФК) и других сопутствующих продуктов - терефталевой (ТФК) и бензойной (БК) кислот, основанному на окислении смеси изомеров ксилола и содержащихся в ней моноалкилбензолов кислородсодержащим газом в среде уксусной кислоты в присутствии катализатора, включающего соли тяжелых металлов и галоидных соединений при повышенных температуре и давлении до определенной степени конверсии указанных изомерных смесей в изофталевую кислоту и сопутствующие продукты с последующей очисткой и разделением изофталевой кислоты и сопутствующих продуктов перекристаллизацией в растворителе, причем процесс окисления осуществляют в две ступени с возрастающей по ступеням концентрацией Сo-Мn катализатора, промотированного соединениями галоида в виде НВr в эквимолярном соотношении к металлам в интервале 800-1200 ppm, при температуре в пределе 150-200°С и дискретного ступенчатого понижения давления в интервале 1,8-1,2 МПа с градиентом перепада между ступенями 0,2-0,6 МПа; очистку и разделение смеси изофталевой и сопутствующих бензолкарбоновых кислот проводят в две ступени путем экстракции примесей рекристаллизацией в уксусной кислоте в температурном интервале 140-230°С на первой ступени с последующим выделением очищенной бинарной смеси изофталевой и терефталевой кислот и ее разделением на второй ступени методом растворения в воде при температуре 220-230°С и ступенчатой избирательной кристаллизацией и выделением терефталевой кислоты в температурном интервале 180-195°С, изофталевой кислоты в температурном интервале 60-100°С. Техническим результатом является улучшение качества изофталевой кислоты и сопутствующих продуктов и повышение эффективности процесса их получения. 9 з.п. ф-лы, 3 табл.

2430911
выдан:
опубликован: 10.10.2011
СПОСОБ ПРОВЕДЕНИЯ МЕХАНОХИМИЧЕСКИХ РЕАКЦИЙ И РЕАКТОР ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТОГО СПОСОБА

Изобретения могут быть использованы в технологии органо-минеральных удобрений, в частности солей гуминовых кислот на основе торфа, кормовых добавок для сельскохозяйственных животных. Способ проведения механохимических реакций при сжатии, температуре, давлении и обработке ультразвуком исходного материала в реакторе включает обработку массы с помощью шнека. Обрабатываемая масса в объеме 10-90% реверсивно поступает по каналам реактора в зону многократного сжатия, а обработка ультразвуком происходит с помощью двухчастотного кольцевого ультразвукового концентратора, частоты которого отличаются друг от друга на 0,01-15%. Механохимический реактор включает корпус 1, вращающийся от привода вал 5, приемную емкость 4 исходного материала, шнек 2, мундштук 9 и ультразвуковой генератор. Корпус 1 реактора выполнен в виде многогранника с каналами 12 вдоль оси корпуса 1, при этом в каналах расположены гребенки 11. Ультразвуковой генератор представляет собой кольцевой ультразвуковой концентратор 8. Реактор позволяет получать соли гуминовых кислот из смеси торфа и щелочи, составляющей 10-20% от массы торфа по весу в сухом эквиваленте. Способ и устройство позволяют получать гомогенизированную продукцию в реакторе, в котором эффективно протекают механохимические реакции, с получением природного экологически чистого удобрения. 3 н. и 5 з.п. ф-лы, 4 ил.

2426722
выдан:
опубликован: 20.08.2011
СПОСОБ ПОЛУЧЕНИЯ ЧИСТОЙ ИЗОФТАЛЕВОЙ КИСЛОТЫ И СОПУТСТВУЮЩИХ ПРОДУКТОВ ИЗ ИЗОМЕРОВ ЦИМОЛА И ДИИЗОПРОПИЛБЕНЗОЛА

Изобретение относится к органическому и нефтехимическому синтезу, конкретно к технологическому процессу получения чистой изофталевой кислоты (ЧИФК) и сопутствующих продуктов - терефталевой (ТФК) и муравьиной (МК) кислот путем окисления изомеров цимола или диизопропилбензола кислородсодержащим газом в среде уксусной кислоты в присутствии катализатора, включающего соли тяжелых металлов и галоидных соединений, при повышенных температуре и давлении до определенной степени конверсии указанных изомерных смесей в изофталевую кислоту и сопутствующие продукты с последующим разделением и очисткой ИФК и сопутствующих продуктов перекристаллизацией в воде, где изомеры цимола или диизопропилбензола окисляют в две ступени при температуре на 1-й ступени 120-140°С, на 2-й ступени при 150-160°С в условиях возрастающей по ступеням концентрации Со-Мn катализатора в пределах на 1-й ступени 1300-1800 ppm (0,130-0,180%), на 2-й ступени 1800-2400 ppm (0,180-0,240%), промотированного соединениями галоида, понижения давления в интервале 0,9-1,6 МПа с градиентом понижающего перепада между ступенями в интервале 0,2-0,6 МПа; очистку и разделение полученной после окисления реакционной массы, выделения из нее твердого кристаллического продукта и его промывки уксусной кислотой проводят перекристаллизацией в воде с предварительной выдержкой водной суспензии смеси ИФК-ТФК при температуре 225-235°С в течение 10-15 минут и последовательным ступенчатым выделением целевых и сопутствующих продуктов: при 150-190°С - выделение твердой ТФК с получением водного маточного раствора и при 60-80°С - выделение твердой ИФК из указанного маточного раствора, с последующей промывкой выделенной ИФК 2-2,5-кратным количеством воды с получением ИФК следующего качества: - цветность, °Н, 10 - м-карбоксибензальдегид [М-КБА], %, 0,002 - м-толуиловая кислота [М-ТК], %, 0,005 - бензойная кислота [БК], %, 0,005. 1 з.п. ф-лы, 2 табл.

2415836
выдан:
опубликован: 10.04.2011
СПОСОБ ПОЛУЧЕНИЯ n-АМИНОБЕНЗОАТА МАРГАНЦА (II)

Изобретение относится к способу получения n-аминобензоата марганца (II) путем прямого взаимодействия металла с карбоновой кислотой в присутствии окислителя. В качестве окислителя используют пероксид марганца в мольном соотношении с металлом в диапазоне 1:1-1:3 при суммарной мольной загрузке металлсодержащих реагентов 0,75-1,25 моль/кг и их мольном соотношении с кислотой 1:(1,95÷2,0). Растворителем жидкой фазы берут бутилацетат. В качестве стимулирующей добавки используют молекулярный йод и твердый n-аминобензоат марганца в количестве соответственно 0,01-0,10, 0-0,035 моль/кг. Загрузку ведут в последовательности: стеклянный бисер в массовом соотношении с остальной загрузкой 1,5:1, бутилацетат, карбоновая кислота, металл, его пероксид и молекулярный йод, после чего включают механическое перемешивание, вводят твердый карбоксилат марганца. Процесс проводят при самопроизвольно повышающейся температуре в диапазоне 20-45°С и контроле методом отбора проб и их анализе на содержание целевого продукта до достижения 98%-ного и более выхода от расчетного значения. После чего процесс прекращают, реакционную смесь отделяют от стеклянного бисера, охлаждают до 10-15°С, выдерживают при такой температуре в течение 1,5-2,0 ч, фильтруют. Осадок снимают с фильтра и направляют на очистку путем перекристаллизации, а фильтрат накапливают и подвергают простой перегонке; отогнанный растворитель возвращают в обратный процесс, а из куба после охлаждения и фильтрования выделяют дополнительное количество целевого продукта. Технический результат - увеличение выхода целевого продукта, повышение экологических характеристик процесса и снижение его энергоемкости. 1 з.п. ф-лы, 1 табл.

2414451
выдан:
опубликован: 20.03.2011
СПОСОБ И АППАРАТ ДЛЯ ПРОИЗВОДСТВА АРОМАТИЧЕСКИХ КАРБОНОВЫХ КИСЛОТ

Изобретение относится к способам получения ароматических карбоновых кислот. Способ, например, включает: контактирование сырья, содержащего по меньшей мере один замещенный ароматический углеводород, в котором заместители способны к окислению до карбоксильных групп, с газообразным кислородом в реакционной смеси жидкофазного окисления, содержащей монокарбоновую кислоту в качестве растворителя и воду, в присутствии каталитической композиции, предназначенной для окисления замещенного ароматического углеводорода до ароматической карбоновой кислоты, содержащей по меньшей мере один тяжелый металл, в секции реакции при повышенной температуре и давлении, эффективных для сохранения реакционной смеси жидкофазного окисления и образования ароматической карбоновой кислоты и примесей, содержащих побочные продукты реакции, растворенные или суспендированные в реакционной смеси жидкофазного окисления и паровой фазы высокого давления, содержащей растворитель - монокарбоновую кислоту, воду и небольшие количества исходного ароматического углеводорода и побочных продуктов окисления исходного ароматического углеводорода и растворителя - монокарбоновой кислоты; перенос паровой фазы высокого давления, отведенной из секции реакции в секцию разделения, в которой растворитель - монокарбоновую кислоту, воду и побочные продукты окисления разделяют по меньшей мере на одну первую жидкую фазу, обогащенную растворителем - монокарбоновой кислотой, и по меньшей мере на одну вторую жидкую фазу, обогащенную водой, и по меньшей мере на одну вторую паровую фазу высокого давления, обедненную растворителем - монокарбоновой кислотой, содержащую водяной пар, так что побочные продукты окисления исходного ароматического углеводорода предпочтительно находятся в первой жидкой фазе и побочные продукты окисления растворителя - монокарбоновой кислоты - предпочтительно находятся во второй паровой фазе высокого давления; и удаление из секции разделения в отдельных потоках первой жидкой фазы, обогащенной растворителем - монокарбоновой кислотой, и второй жидкой фазы, обогащенной водой, которая содержит менее 5 мас.% растворителя - монокарбоновой кислоты и побочных продуктов ее окисления, и второй паровой фазы высокого давления, которая практически содержит менее 2 мас.% побочных продуктов окисления исходного ароматического углеводорода. Изобретение также относится к устройству для получения ароматических карбоновых кислот. 4 н. и 41 з.п. ф-лы, 2 ил.

2414448
выдан:
опубликован: 20.03.2011
Наверх