Получение гомогенного поликристаллического материала с определенной структурой – C30B 28/00

МПКРаздел CC30C30BC30B 28/00
Раздел C ХИМИЯ; МЕТАЛЛУРГИЯ
C30 Выращивание кристаллов
C30B Выращивание монокристаллов; направленная кристаллизация эвтектик или направленное расслаивание эвтектоидов; очистка материалов зонной плавкой; получение гомогенного поликристаллического материала с определенной структурой; монокристаллы или гомогенный поликристаллический материал с определенной структурой; последующая обработка монокристаллов или гомогенного поликристаллического материала с определенной структурой; устройства для вышеуказанных целей
C30B 28/00 Получение гомогенного поликристаллического материала с определенной структурой

C30B 28/02 .непосредственно из твердого состояния
C30B 28/04 .из жидкостей
C30B 28/06 ..обычным замораживанием или замораживанием при температурном градиенте
C30B 28/08 ..зонной плавкой
C30B 28/10 ..вытягиванием из расплава
C30B 28/12 .непосредственно из газообразного состояния
C30B 28/14 ..химической реакцией реакционноспособных газов

Патенты в данной категории

СПОСОБ СИНТЕЗА ПОЛИКРИСТАЛЛОВ ПОЛУПРОВОДНИКОВОГО СОЕДИНЕНИЯ ГРУПП II-VI

Изобретение относится к технологии получения поликристаллов полупроводникового соединения групп II-VI. Два или более исходных элементов вводят в полупроницаемую для воздуха внутреннюю емкость из pBN 6a, внутреннюю емкость вводят в полупроницаемую для воздуха теплостойкую внешнюю емкость 6b из графита, поверхность которой покрыта агентом типа стекловолокна, и помещают в печь 1 высокого давления, имеющую средства 7 нагрева. Воздух внутри печи высокого давления откачивают, печь заполняют инертным газом при заданном давлении, внешнюю емкость и внутреннюю емкость нагревают и температуру повышают, используя средства нагрева. Исходные элементы внутри внутренней емкости плавятся и взаимодействуют, и температуру затем постепенно понижают для роста поликристаллов. Изобретение позволяет осуществлять синтез без использования кварцевой ампулы в качестве емкости для синтеза поликристаллов, в результате чего является возможным использование емкости больших размеров без понижения выхода и ее многократное использование, что способствует снижению затрат. 2 з.п. ф-лы, 3 ил., 3 пр.

2526382
выдан:
опубликован: 20.08.2014
ПОЛИКРИСТАЛЛИЧЕСКИЙ АЛМАЗ

Изобретение относится к получению поликристаллического алмаза, который может быть использован при изготовлении водоструйных сопел, гравировальных резцов для глубокой печати, скрайберов, алмазных режущих инструментов, скрайбирующих роликов. Поликристаллический алмаз получают превращением и спеканием углеродного материала, имеющего графитоподобную слоистую структуру, под сверхвысоким давлением от 12 до 25 ГПа и при высокой температуре от 1800ºC до 2600ºC без добавления спекающей добавки или катализатора, причем спеченные алмазные зерна, составляющие этот поликристаллический алмаз, имеют средний диаметр зерна более 50 нм и менее 2500 нм и чистоту 99% или более, а алмаз имеет диаметр зерна D90, составляющий (средний диаметр зерна + средний диаметр зерна × 0,9) или менее, и твердость 100 ГПа или более. Полученный алмаз имеет пластинчатую или тонкослоистую структуру, за счет которой такой алмаз меньше предрасположен к разрушению, что предотвращает его неравномерный износ и истирание за короткое время. 6 н. и 7 з.п. ф-лы, 5 табл., 5 пр.

2522028
выдан:
опубликован: 10.07.2014
СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКИХ ПОЛИКРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ СЕЛЕНИДА ЦИНКА

Изобретение относится к области технологии материалов для оптоэлектроники конструкционной оптики, которые могут быть использованы для изготовления оптических элементов ИК-техники. Способ включает подготовку шихты на основе селенида цинка, помещение ее в реактор, вакуумирование до давления 10-5 -10-4 мм.рт.ст., нагрев зоны испарения реактора до температуры испарения, пропускание паров ZnSe через фильтр с последующим их осаждением на подложку, имеющую температуру ниже температуры испарения, и последующие охлаждение реактора с заготовкой до комнатной температуры, при этом в качестве шихты используют смесь селенида цинка с элементарным селеном при следующих масс %: селенид цинка - 90-99, элементарный селен - 1-10, зону испарения реактора нагревают до температуры испарения 1000-1200°С, охлаждение ведут со скоростью 25-30°С/ч. Изобретение позволяет получать материал с контролируемым стехиометрическим соотношением элементов и высоким оптическим качеством заготовок, обладающих низким поглощением в рабочем диапазоне. 1 табл.

2516557
выдан:
опубликован: 20.05.2014
АППАРАТ ДЛЯ ПОЛУЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ

Изобретение относится к производству стержней поликристаллического кремния. Способ осуществляют в реакторе, содержащем донную плиту, образующую нижнюю часть реактора и колоколообразный вакуумный колпак, прикрепленный с возможностью снятия к донной плите, в котором на донной плите расположено множество газоподводящих отверстий для подачи сырьевого газа снизу вверх в реактор, и газовыводящих отверстий для выпуска отработанного газа после реакции, и в котором множество газоподводящих отверстий расположено концентрически по всей площади, охватывающей верхнюю поверхность донной плиты, в которой устанавливают множество кремниевых затравочных стержней, причем кремниевые затравочные стержни нагревают, и поликристаллический кремний осаждают из сырьевого газа на поверхностях кремниевых затравочных стержней, при этом прекращают подачу сырьевого газа из газоподводящих отверстий вблизи центра реактора в течение заданного времени, в то время как подают сырьевой газ из других газоподводящих отверстий на ранней стадии реакции, и обеспечивают путь для нисходящего газового потока после столкновения с потолком вакуумного колпака. Изобретение позволяет эффективно производить высококачественный поликристаллический кремний. 7 з.п. ф-лы, 6 ил.

2495164
выдан:
опубликован: 10.10.2013
СПОСОБ ПОЛУЧЕНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО ОПТИЧЕСКОГО СЕЛЕНИДА ЦИНКА

Изобретение относится к области технологии оптических сред, а именно к технологии получения поликристаллических оптических материалов, прозрачных для видимого и ИК-излучения в широком диапазоне спектра. Способ включат нагрев и испарение исходного сырья при температуре 1050-1150°C, конденсацию пара на подложку, нагретую до 950-1050°C, со скоростью 0,2-0,8 мм/час, при этом охлаждение установки с выращенной заготовкой осуществляют по регулируемому режиму, при котором до 900°C охлаждение проводят со скоростью 50-100°C/час, в интервале 900-600°C - со скоростью 30-50°C/час, от 600°C - инерционное охлаждение до комнатной температуры. Для отгонки труднолетучих примесей исходное сырье в виде порошка или компактных осколков может быть подвергнуто предварительному отжигу в среде инертного газа, например аргона, при температуре до 1200°C в течение 10-15 часов. Изобретение позволяет получить материал с высоким выходом годного продукта и следующими оптическими характеристиками при диаметре выращиваемых заготовок до 500 мм и толщине до 50 мм: пропускание на длине волны 0,6 мкм - 30%, 1,06 мкм - 60%, 3-5 мкм - 69%, 8-12,5 мкм - 71%. Двулучепреломление в оптическом материале не превышает 100 нм/см. 1 з.п. ф-лы, 2 пр.

2490376
выдан:
опубликован: 20.08.2013
СПОСОБ ПОЛУЧЕНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО МАТЕРИАЛА НА ОСНОВЕ КУБИЧЕСКОГО НИТРИДА БОРА, СОДЕРЖАЩЕГО АЛМАЗЫ

Изобретение направлено на получение синтетических поликристаллических материалов, основу которых составляет поликристаллический кубический нитрид бора, содержащий алмазные зерна. Материал предназначен для изготовления режущих элементов, которыми оснащаются буровые коронки, инструментов для правки шлифовальных кругов, для сверления и резки природных и искусственных строительных материалов. Способ включает воздействие на шихту, включающую гексагональный и кубический нитрид бора и порошки алмаза, давлением при температуре в области термодинамической стабильности кубического нитрида бора и алмаза диаграмм состояния, при этом алмазные порошки берут с размером зерен 200-3000 мкм в количестве 5,0-37,5 об.%, гексагональный нитрид бора - размером 1-3 мкм, кубический нитрид бора - размером 1-5 мкм. Крупнозернистые алмазные порошки в мелкозернистой матрице синтезированного кубического бора позволяют увеличить работоспособность материала при бурении пород V-XII категорий буримости. 2 з.п. ф-лы.

2484888
выдан:
опубликован: 20.06.2013
ЛАЗЕРНАЯ ФТОРИДНАЯ НАНОКЕРАМИКА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ

Изобретение относится к технологии получения оптических поликристаллических материалов, а именно фторидной керамики, имеющей наноразмерную структуру и усовершенствованные оптические, лазерные и генерационные характеристики. Фторидную нанокерамику получают термомеханической обработкой исходного кристаллического материала, выполненного из CaF2-YbF3, при температуре пластической деформации до получения заготовки в виде поликристаллического микроструктурированного вещества, характеризующегося размером зерен кристаллов 3-100 мкм и наноструктурой внутри зерен, путем отжига на воздухе при температуре не менее 0,5 от температуры плавления с уплотнением полученной заготовки в вакууме при давлении 1-3 тс/см2 до окончания процесса деформации, после чего отжигают в активной среде тетрафторида углерода при давлении 800-1200 мм рт.ст. В качестве исходного кристаллического материала могут быть использованы мелкодисперсный порошок, прошедший термообработку в тетрафториде углерода, или отформованная заготовку кристаллического материала, полученная из порошка и термообработанная в тетрафториде углерода. Изобретение позволяет получать фторидную нанокерамику высокой степени чистоты с повышенной однородностью структуры данного оптического материала. 2 н. и 2 з.п. ф-лы, 3 пр., 1 табл.

2484187
выдан:
опубликован: 10.06.2013
СПОСОБЫ ПОЛУЧЕНИЯ СЛОЖНОГО ГИДРОСУЛЬФАТФОСФАТА ЦЕЗИЯ СОСТАВА Cs5(HSO4)2(H2PO4)3

Изобретение относится к неорганической химии, в частности к синтезу гидросульфатфосфата цезия состава Cs5(HSO 4)2(H2PO4)3 , который может быть использован в качестве твердого протонпроводящего материала. Монокристаллы Cs5(HSO4) 2(H2PO4)3 получают путем приготовления водного раствора с мольным соотношением CsHSO 4:CsH2PO4, равным 2:3, насыщенного при температуре 50-75°С с последующей кристаллизацией методом управляемого снижения растворимости. Cs5(HSO4 )2(H2PO4)3 в виде поликристаллического порошка получают приготовлением водного раствора с мольным соотношением CsHSO4:CsH2 PO4, равным 2:3, насыщенного при температуре 50-75°С, высаливанием Cs5(HSO4)2(H 2PO4)3 этиловым спиртом с последующей просушкой при температуре до 80°С или методом твердофазного синтеза из шихты с мольным соотношением CsHSO4:CsH 2PO4, равным 2:3, при температуре 60-90°С. Полученное соединение CS5(HSO4)2 (H2PO4)3 обладает меньшим значением температуры фазового перехода (115,0°С) и большим значением протонной проводимости (1 Ом-1см-1 при температуре 120,0°С). Соединение Cs5(HSO 4)2(H2PO4)3 химически устойчиво до температуры 140,0°С. 3 н.п. ф-лы, 1 ил., 3 пр.

2481427
выдан:
опубликован: 10.05.2013
СПОСОБ ПОЛУЧЕНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ

Изобретение относится к технологии получения стержней из поликристаллического кремния. Способ включает нагрев множества кремниевых стержней-затравок, помещенных в реакционную печь, с последующим осаждением на поверхностях кремниевых стержней-затравок поликристаллического кремния с помощью сырьевого газа, испускаемого из газовыпускных отверстий, расположенных во внутренней нижней части реакционной печи. Способ включает этап стабилизации осадка, на котором скорость испускания сырьевого газа из газовыпускных отверстий плавно повышают на первой стадии осаждения поликристаллического кремния, при этом 5-15% газовыпускных отверстий закрыто; этап придания формы, на котором первую скорость испускания повышают при скорости повышения более высокой, чем скорость повышения на этапе стабилизации, а затем скорость испускания плавно повышают при скорости, более низкой, чем скорость повышения; при этом длительность, требуемая для этапа придания формы, соответствует 20-35% от общей продолжительности осаждения поликристаллического кремния и 30-55% газовыпускных отверстий закрыто; и этап роста, на котором после этапа придания формы скорость испускания сырьевого газа снижают за счет уменьшения количества закрытых газовыпускных отверстий по сравнению с этапом придания формы. Изобретение позволяет получать большее количество высококачественного поликристаллического кремния, имеющего гладкую морфологию поверхности путем эффективного предохранения поверхности кремниевых стержней от деформации. 3 з.п. ф-лы, 1 табл., 7 ил., 8 пр.

2475570
выдан:
опубликован: 20.02.2013
СПОСОБ ПОЛУЧЕНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ

Изобретение относится к технологии полупроводниковых материалов и может быть использовано в производстве поликристаллического кремния. Способ включает приготовление парогазовой смеси (ПГС) из хлорсиланов и водорода в испарителе под давлением посредством барботажа водорода через слой хлорсиланов, водородное восстановление кремния на разогретых кремниевых стержнях в реакторе, низкотемпературную конденсацию хлорсиланов отходящей из реактора ПГС, ректификацию хлорсиланов, абсорбционное разделение водорода и хлористого водорода, десорбцию хлористого водорода из абсорбента и компримирование очищенного водорода, при этом на первом этапе в испарителе готовят первую ПГС под давлением 0,8÷1,0 МПа, для чего в него подают смесь кремнийсодержащих продуктов с преобладанием объемной доли трихлорсилана (ТХС) и водород с температурой 250÷300°С, подогретый за счет рекуперации тепла отходящей из реактора ПГС, причем обеспечивают мольное отношение водорода к хлорсиланам nН2/nХС, равное (3÷4):1, полученную ПГС подают в реактор, температурное поле внутри которого выравнивают по его диаметру и высоте тепловым зеркалом, полученным путем покрытия стенок реактора материалом с низкой поперечной теплопроводностью 3÷5 Вт/м К, и проводят наращивание диаметра разогретых до температуры 1050÷1100°С исходных кремниевых стержней в четыре раза, на втором этапе в испарителе под давлением 0,8÷1,0 МПа готовят вторую ПГС из смеси кремнийсодержащих продуктов с преобладанием в ней объемной доли тетрахлорида кремния (ТХК) и водорода с температурой 250÷300°С, подогретого за счет рекуперации тепла отходящей из реактора ПГС, причем обеспечивают мольное отношение водорода к хлорсиланам nН2/nХС, равное (6÷8):1, полученную ПГС подают в реактор на разогретые до температуры 1150÷1200°С кремниевые стержни для проведения одновременно процессов гидрирования ТХК в ТХС и дихлорсилан (ДХС) и водородного восстановления кремния из образовавшихся кремнийсодержащих продуктов, выходящую из реактора ПГС направляют на низкотемпературную конденсацию для выделения газообразного водорода с хлористым водородом и жидких хлорсиланов, газообразный водород и хлористый водород под давлением 0,6÷0,8 МПа направляют на разделение в абсорбер, выделение хлористого водорода из абсорбента проводят в десорбере, в котором давление по отношению к давлению в абсорбере снижено не менее чем в 10 раз, с одновременным подогревом абсорбента, перед подачей водорода из абсорбера в адсорбер для очистки от следов хлорсиланов и хлористого водорода его с температурой минус 62 ÷ минус 65°С направляют в блок конденсации хлорсиланов для рекуперации «холода» встречным потоком ПГС из реактора водородного восстановления кремния. Изобретение обеспечивает дополнительное образование ТХС, ДХС из ТХК (более 30 мол.%), удержание образованных ТХС и ДХС вблизи поверхности нагретых кремниевых стержней из-за поддержания стабильного выровненного теплового поля внутри реакционной зоны за счет наличия теплового зеркала на внутренней поверхности реактора, что приводит к уменьшению энергозатрат и себестоимости производства поликремния. 1 ил., 1 табл., 1 пр.

2475451
выдан:
опубликован: 20.02.2013
БЕСЦВЕТНЫЙ МОНОКРИСТАЛЛИЧЕСКИЙ АЛМАЗ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Изобретение относится к технологии получения монокристаллического бесцветного алмаза химическим осаждением из паровой фазы (ХОПФ), который может быть использован для оптических и ювелирных применений. Способ включает подготовку подложки, использование атмосферы синтеза ХОПФ-алмаза, содержащей азот в концентрации в пределах от 300 частей на миллиард (ppb) до 30 частей на миллион (ppm), и добавление в атмосферу синтеза газа, содержащего бор в концентрации в пределах от 0,5 ppb до 0,2 ppm; причем бор добавляют в атмосферу синтеза управляемым образом так, что обеспечивается стабильность концентрации бора лучше 20% и в количестве, выбранном с обеспечением уменьшения негативного влияния на цвет алмаза, оказываемого азотом, где доминирующий объем по меньшей мере 80% монокристаллического алмаза обладает по меньшей мере одной из следующих характеристик: спектр поглощения, измеренный при комнатной температуре, соответствующий цвету стандартного круглого бриллианта весом 0,5 карат, лучше, чем К по цветовой шкале Американского геммологического института (GIA), а коэффициент поглощения, измеренный при комнатной температуре, на длине волны 270 нм составляет менее 2,9 см-1, на длине волны 350 нм - менее 1,5 см-1, на длине волны 520 нм - менее 0,45 см-1 и на длине волны 700 нм - менее 0,18 см-1; и при этом этот монокристаллический ХОПФ-алмаз имеет толщину более 0,1 мм; концентрация азота в доминирующем объеме алмаза находится в пределах от 1·1014 до 5·1017 атомов/см3, а концентрация бора - от 3·1014 до 1·1017 атомов/см 3. Изобретение позволяет получать бесцветный или почти бесцветный монокристаллический алмаз для производства драгоценных камней и оптических устройств. 2 н. и 13 з.п. ф-лы, 3 ил., 6 табл., 9 пр.

2473720
выдан:
опубликован: 27.01.2013
РЕАКТОР ДЛЯ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ И СПОСОБ ПОЛУЧЕНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ

Изобретение относится к технологии производства поликристаллического кремния. Реактор содержит установленный внутри него кремниевый затравочный стержень, нагреваемый посредством подачи электричества, патрубки 6 для подачи газообразного исходного материала, установленные в нижней части 2 реактора, сопла 10 для подачи газообразного исходного материала, которые проходят снизу вверх от патрубков 6, обеспечивая соединение с возможностью сообщения, при этом сопла 10 имеют сужающуюся цилиндрическую форму и включают сквозное отверстие 12, наружную периферическую боковую поверхность 11, внутреннюю периферическую боковую поверхность 12а, поверхность 13 меньшего диаметра на верхнем конце сопла 10, поверхность 15 большего диаметра, которая является торцевой поверхностью на противоположной стороне от поверхности 13 меньшего диаметра, отверстие 14, сформированное в поверхности 13 меньшего диаметра, и цилиндрическое отверстие 16, сформированное в поверхности 15 большего диаметра, при этом наружная периферическая боковая поверхность 11 и внутренняя периферическая боковая поверхность 12а сквозного отверстия 12, выполненного внутри сопел 10, уменьшаются в диаметре по направлению вверх, цилиндрическое отверстие 16 имеет центральную ось, которая совпадает с центральной осью сквозного отверстия 12, цилиндрическое отверстие 16 посажено на патрубок 6 для подачи газообразного исходного материала, посредством чего сопло 10 крепится к патрубку 6, и верхний край 13 сопла 10 устанавливается на высоте в пределах от -10 см до +5 см по отношению к верхнему краю электрода, который удерживает кремниевый затравочный стержень. За счет стабильности подачи газообразного исходного материала на поверхность кремниевого затравочного стержня предотвращается появление нежелательной морфологии в виде попкорна, что способствует улучшению качества и повышению выхода поликристаллического кремния. 2 н. и 3 з.п. ф-лы, 4 ил., 2 табл.

2470098
выдан:
опубликован: 20.12.2012
СПОСОБ ОЧИСТКИ МЕТАЛЛУРГИЧЕСКОГО КРЕМНИЯ УВЛАЖНЕННОЙ ПЛАЗМОЙ ПЕРЕМЕННОГО ТОКА В ВАКУУМЕ

Изобретение относится к технологии очистки кремния с помощью плазменной технологии при промышленном производстве кремния для фотоэлектронной промышленности, и в том числе для изготовления солнечных батарей. Способ включает разогрев в тигле кремния до получения расплава и обработку расплава плазменным факелом, направленным под острым углом к поверхности, содержащим инертный газ и пары воды, при этом разогрев и плавление неочищенного кремния производят в кварцевом тигле цилиндрической формы в вакууме с помощью графитового нагревателя, затем расплав кремния обрабатывают с помощью системы из трех двухрежимных плазмотронов с изолированными от корпуса анодами и системой подачи воды в канал анода, сперва плазмой сухого аргона при постоянном токе 50-80 А, затем плазмой увлажненного аргона при переменном токе 100-200 А, после чего формируют слиток поликристаллического кремния путем медленного охлаждения расплава в кварцевом тигле. Технический результат направлен на получение из металлургического кремния чистотой 98-99.9% слитка поликристаллического кремния степени чистоты 99.9999%, при содержании фосфора не более 0.1 ppmw, бора от 0.1 до 1 ppmw, пригодного для изготовления фотопреобразователей промышленным способом. 1 ил.

2465202
выдан:
опубликован: 27.10.2012
СПОСОБ РАФИНИРОВАНИЯ МЕТАЛЛУРГИЧЕСКОГО КРЕМНИЯ ПЛАЗМОЙ СУХОГО АРГОНА С ИНЖЕКЦИЕЙ ВОДЫ НА ПОВЕРХНОСТЬ РАСПЛАВА С ПОСЛЕДУЮЩЕЙ НАПРАВЛЕННОЙ КРИСТАЛЛИЗАЦИЕЙ

Изобретение относится к технологии очистки кремния с помощью плазменной технологии при промышленном производстве кремния для фотоэлектронной промышленности, в том числе для изготовления солнечных батарей. Способ включает разогрев в тигле неочищенного кремния до получения расплава и обработку его поверхности плазменным факелом, содержащим инертный газ, направленным под острым углом к поверхности расплава, при этом разогрев и плавление неочищенного кремния производят с помощью резистивных нагревателей в вакууме в кварцевом тигле прямоугольной формы, температура дна которого контролируется с помощью оптического пирометра, при этом поверхность расплава кремния обрабатывают струей плазмы сухого аргона, одновременно подавая на нее порции дистиллированной воды объемом от 0.01 до 0.05 см3 под давлением 1000-1500 кгс/см2 через сопло-форсунку, после чего формируют слиток поликристаллического кремния методом контролируемой направленной кристаллизации. Технический результат направлен на получение из металлургического кремния чистотой 98-99.9%, слитка поликристаллического кремния степени чистоты 99.9999% при содержании фосфора не более 0.1 ppmw, бора от 0.1 до 1 ppmw, пригодного для изготовления фотопреобразователей промышленным способом. 1 ил.

2465199
выдан:
опубликован: 27.10.2012
РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ СТЕРЖНЕЙ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ

Изобретение относится к устройствам, предназначенным для выращивания стержней поликристаллического кремния, а именно для выращивания поликристаллического кремния преимущественно путем осаждения из газовой фазы на подогреваемые стержневые подложки. Реактор содержит охлаждаемый поддон 1, цилиндрический колпак 2, закрепленный на поддоне, состоящий из внутренней и наружной рубашек 3, 4, с образованием между ними канала 5 охлаждения, в котором размещено средство увеличения скорости циркуляции охлаждающей среды в виде змеевика 6. Змеевик 6 снабжен средством 7 подвода рабочего газа и средством 8 его отвода. Обеспечивается использование тепла, направляемого на поддержание процесса восстановления кремния и снижение удельных затрат на проведение процесса. 2 з.п. ф-лы, 4 ил.

2457177
выдан:
опубликован: 27.07.2012
РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ СТЕРЖНЕЙ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ

Изобретение относится к устройствам для выращивания поликристаллического кремния, преимущественно, путем осаждения из газовой фазы на подогреваемые стержневые подложки (основы). Реактор содержит охлаждаемый поддон 1, установленный на опорной конструкции, цилиндрический колпак 2, состоящий из внутренней рубашки охлаждения 3 и наружной рубашки охлаждения 4, направляющих ребер охлаждения 5. Наружная рубашка охлаждения 4 состоит из сегментов, которые жестко связаны между собой и посредством направляющих ребер 5 с внутренней рубашкой 3 сваркой. Конструкция снабжена средствами для подвода 7 и отвода 8 охлаждающей среды и шпангоутом 9 для крепления колпака к поддону 1. Между наружной 4, внутренней 3 рубашками охлаждения и направляющими ребрами 5 образованы кольцевые каналы, переходящие с одного уровня на другой по спирали. Технический результат изобретения заключается в уменьшении массы колпака реактора и улучшении условий охлаждения внутренней рубашки 3. 5 ил.

2455401
выдан:
опубликован: 10.07.2012
СИСТЕМА ОХЛАЖДЕНИЯ КОЛПАКА РЕАКТОРА ДЛЯ ВЫРАЩИВАНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ

Изобретение относится к устройствам, специально предназначенным для выращивания поликристаллического кремния, а именно к системе охлаждения колпака реактора для выращивания поликристаллического кремния, преимущественно путем осаждения из газовой фазы на подогреваемые стержневые подложки (основы). Система охлаждения колпака реактора состоит из двух жидкостных циркуляционных контуров. Первый жидкостный циркуляционный контур 1 образован между внутренней 2 и наружной 3 рубашками охлаждения и снабжен патрубками ввода 4 и вывода 5 охлаждающей среды, второй жидкостный циркуляционный контур 6, образован цилиндрической обечайкой 7, установленной внутри колпака реактора и жестко связанной с внутренней 2 рубашкой охлаждения и шпангоутом 8. Система снабжена дополнительными патрубками ввода 9 и вывода 10 охлаждающей среды. Цилиндрическая обечайка 7 может быть выполнена из аустенитной стали, внутренняя рубашка охлаждения 2 - из биметалла: аустенитная сталь - углеродистая сталь, а шпангоут - из углеродистой стали. Образование второго контура охлаждения обеспечивает охлаждение шпангоута с внутренней стороны реактора, что улучшает температурные условия работы шпангоута. 1 з.п. ф-лы, 2 ил.

2451118
выдан:
опубликован: 20.05.2012
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО КУБИЧЕСКОГО НИТРИДА БОРА С МЕЛКОЗЕРНИСТОЙ СТРУКТУРОЙ

Изобретение относится к производству поликристаллического кубического нитрида (поликристалла) с мелкозернистой структурой. Поликристаллический материал на основе кубического нитрида бора получают воздействием высокого давления и температуры на шихту, содержащую композиционный порошок зернистостью 4-100 нм, включающий гексагональный нитрид бора и нитрид алюминия, при их соотношении (4-6):1. Композиционный порошок получают в режиме СВС-технологии из бор-алюминий-азотсодержащих соединений. Процесс осуществляют при давлении 60-120 кбар и температуре 1700-2400°С в области термодинамической стабильности кубического нитрида бора в течение 15-60 с. Поликристаллический кубический нитрид бора имеет повышенную износостойкость и кромкостойкость при обработке высоколегированных стальных и жаропрочных никелевых сплавов. 2 з.п. ф-лы.

2450855
выдан:
опубликован: 20.05.2012
СПОСОБ ПОЛУЧЕНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО МАТЕРИАЛА НА ОСНОВЕ КУБИЧЕСКОГО НИТРИДА БОРА

Изобретение относится к производству поликристаллического материала (поликристалла) на основе кубического нитрида бора. Способ получения поликристаллического материала на основе кубического нитрида бора заключается в воздействии высоким давлением и температурой на шихту, содержащую композиционный порошок BNг+AlN зернистостью 4-100 нм, полученный в режиме СВС-технологии из бор-алюминий-азотсодержащих соединений, кубический нитрид бора и катализатор, при следующем соотношении компонентов шихты, вес.%: BNг+AlN - 65-75, ВNкуб - 15-25, катализатор - 3-10. Соотношение гексагонального нитрида бора и нитрида алюминия в композиционном порошке составляет (4-6):1. Зернистость порошка кубического нитрида бора может составлять 1-40 мкм. В шихту дополнительно может быть введен порошок гексагонального нитрида бора зернистостью 1-40 мкм в количестве 1-15 вес.% или кремний в количестве 0,1-1 вес.%. Синтез ведут при давлениях 60-120 кбар и температурах 1700-2400°С в течение 15-60 с. Изобретение позволяет повысить износостойкость поликристаллического материала при обработке высоколегированных стальных и жаропрочных никелевых сплавов. 4 з.п. ф-лы, 1 табл.

2449831
выдан:
опубликован: 10.05.2012
СПОСОБ ПОЛУЧЕНИЯ ФТОРИДНОЙ НАНОКЕРАМИКИ

Изобретение относится к технологии получения оптических поликристаллических материалов, а именно фторидной керамики, имеющей наноразмерную структуру и усовершенствованные оптические, лазерные и генерационные характеристики. Способ включает термомеханическую обработку исходного кристаллического материала, выполненного из галогенидов металлов, при температуре пластической деформации, получение поликристаллического микроструктурированного вещества, характеризующегося размером зерен кристаллов 3-100 мкм и наноструктурой внутри зерен, причем термомеханическую обработку исходного кристаллического материала проводят в вакууме 10-4 мм рт.ст., достигая степени деформации исходного кристаллического материала на величину от 150 до 1000%, в результате чего получают поликристаллический наноструктурированный материал, который уплотняют при давлении 1-3 тс/см2 до достижения теоретической плотности, после чего отжигают в активной среде фторирующего газа. Решение проблемы получения материала высокого оптического качества для широкого класса соединений фторидной керамики на основе фторидов щелочных, щелочноземельных и редкоземельных элементов, характеризующейся наноструктурой, осуществляется за счет оптимального выбора технологических параметров процесса получения нанокерамики, который включает в себя термическую обработку продукта в условиях, позволяющих увеличить чистоту среды и в результате достичь высоких оптических параметров лазерного материала. 2 з.п. ф-лы.

2436877
выдан:
опубликован: 20.12.2011
СПОСОБ ФОРМИРОВАНИЯ СЛОЯ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ НА СТЕРЖНЕВОЙ ОСНОВЕ

Изобретение относится к хлорсилановой технологии получения поликристаллического кремния и может быть использовано в производстве полупроводниковых материалов и электронных приборов. Способ осуществляют в реакторе путем водородного восстановления смеси хлорсиланов с термическим разложением силана и осаждения до необходимой толщины слоя поликристаллического кремния на нагретую до 1100-1200°С стержневую основу, при этом на кремниевую стержневую основу сначала осаждают поликристаллический кремний до получения слоя толщиной около 2 мм, затем поверхность этого слоя поляризуют приложением к ней положительного потенциала 8-10 В относительно основы и осаждают рыхлый слой поликристаллического кремния толщиной 1,5-2,0 мм, после чего поляризационный потенциал отключают и продолжают осаждение поликристаллического кремния до получения слоя необходимой толщины. Изобретение направлено на упрощение процесса снятия осажденного на стержневую основу слоя поликристаллического кремния. 1 ил.

2428525
выдан:
опубликован: 10.09.2011
СПОСОБЫ И АППАРАТУРА ДЛЯ ПРОИЗВОДСТВА МОНОКРИСТАЛЛИЧЕСКОГО ЛИТОГО КРЕМНИЯ И ИЗДЕЛИЙ ИЗ МОНОКРИСТАЛЛИЧЕСКОГО ЛИТОГО КРЕМНИЯ ДЛЯ ФОТОЭЛЕМЕНТОВ

Изобретение относится к технологии производства литого кремния: моно- или поликристаллического, используемого в фотоэлектрических элементах и других полупроводниковых устройствах. Один из вариантов раскрыт в способе получения литого кремния, включающем приведение расплавленного кремния в контакт по меньшей мере с одним затравочным кристаллом кремния в сосуде, имеющем одну или несколько боковых стенок, нагретых по меньшей мере до температуры плавления кремния, и по меньшей мере одну охлаждаемую стенку, и образование твердого массива монокристаллического кремния, необязательно по меньшей мере с двумя измерениями, каждое по меньшей мере примерно по 10 см, путем охлаждения расплавленного кремния при регулировании кристаллизации, причем образование массива включает формирование границы раздела твердого тела с жидкостью по ребру расплавленного кремния, которая по меньшей мере сначала параллельна по меньшей мере одной охлаждаемой стенке, и граница раздела регулируется во время охлаждения таким образом, что она перемещается в направлении, при котором увеличивается расстояние между расплавленным кремнием и по меньшей мере одной охлаждаемой стенкой. Представлены также другие варианты. Предлагаемые способы являются более быстрыми, эффективными и менее дорогими и позволяют регулировать размер, форму и ориентацию зерен кристаллов в литом массиве кристаллизующегося кремния. С их помощью получают литой массив кремния большого размера (например, слитки с площадью поперечного сечения по меньшей мере 1 м2 и до 4-8 м2), не содержащий или практически не содержащий радиально распределенных примесей и кислород-индуцированных дефектов упаковки. 10 н. и 24 з.п. ф-лы, 9 ил., 1 табл.

2425183
выдан:
опубликован: 27.07.2011
СПОСОБ ПОЛУЧЕНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО КУБИЧЕСКОГО НИТРИДА БОРА

Изобретение относится к области получения синтетических сверхтвердых материалов, в частности поликристаллического кубического нитрида бора, в условиях высоких давлений и температур для использования в химической, инструментальной, электронной и ряде других отраслей промышленности. Способ заключается в том, что готовят смесь вюрцитоподобной и кубической модификаций в соотношении от 1:4 до 2:1 соответственно, обрабатывают ее в планетарной мельнице для механоактивации и измельчения частиц до размеров, не превышающих 1 мкм, формуют и спекают смесь при температуре 1400-1800°С и давлении 7,0-9,0 ГПа, выдерживая при температуре спекания в течение времени, определяемого условиями перехода вюрцитоподобной модификации нитрида бора в кубическую без рекристаллизации, равного 5-30 с. Точное время выдержки смеси при заданных температуре и давлении определяют из условия сохранения от 5 до 15% вюрцитоподобного нитрида бора от его количества в исходной смеси. Изобретение позволяет снизить значения параметров синтеза (температуры, давления и продолжительности) и повысить комплекс физико-механических и эксплуатационных характеристик за счет получения из плотных форм нитрида бора сверхтвердых наноструктурированных компактов с субмикронной матрицей. 1 з.п. ф-лы, 1 табл.

2412111
выдан:
опубликован: 20.02.2011
ПОДВЕСКА-ТОКОПОДВОД ДЛЯ СТЕРЖНЕВЫХ ПОДЛОЖЕК

Изобретение относится к получению полупроводниковых материалов, преимущественно поликристаллического кремния, путем осаждения из газовой фазы на подогреваемые подложки и может быть использовано в реакторах с резистивным подогревом стержневых подложек и с верхним токоподводом. Подвеска-токоподвод для стержневых подложек включает обойму 1 с гнездом 2 в виде сужающегося книзу канала с вертикальной стенкой 4 и вкладыш 3 с вертикальной стенкой 6, противолежащей стенке 4 гнезда, пространство между которыми является рабочим зевом клинового зажимного механизма, образованного обоймой и вкладышем. Жесткость конструкции подвески и возможность в клиновом зажимном механизме получить большое удерживающее усилие при равномерном прижиме по всей поверхности контакта зажимаемой стержневой подложки с подвеской позволяет увеличить грузоподъемность подвески. Кроме того, ввиду того что канал гнезда суживается книзу, под действием увеличивающегося веса наращиваемого стержня в клиновом зажимном механизме пропорционально увеличивается удерживающее усилие. Равномерное поджатие по всей длине контактных поверхностей обеспечивает надежный электрический контакт. 12 з.п. ф-лы, 7 ил.

2409709
выдан:
опубликован: 20.01.2011
СПОСОБ ПОЛУЧЕНИЯ АЛЮМООКСИДНОЙ НАНОКЕРАМИКИ

Изобретение относится к области производства оптических материалов, прозрачных в инфракрасной (ИК) области спектра с высоким коэффициентом пропускания и повышенной механической прочностью. Способ включает приготовление из высокодисперсного порошкового -Al2O3 коллоидного раствора, из которого выделяют прозрачный супернатант - золь, который путем ультразвуковой обработки, нагрева, закисления и загущения доводят до состояния, при котором в течение нескольких последующих суток происходит гелирование - образование вязкого золя, который сливают в формообразующую гидрофобную емкость, где выдерживают до образования сформированного объема геля - гелевую заготовку, после извлечения из формы гелевую заготовку подвергают термообработке в несколько стадий, предпочтительно трехстадийной, причем в каждой последующей стадии температура обработки повышается примерно в два раза по отношению к предыдущей, после чего полученный поликристаллический механически прочный материал подвергают спеканию при температуре 1200-1750°С под давлением от 30 до 300 МПа в течение 20-30 минут, после чего проводят вывод печи на температуру окружающей среды в инерционном режиме. Изобретение позволяет получать высококачественный оптический поликристаллический материал из структурообразных элементов с размерами в несколько нанометров и обладающий высокой оптической прозрачностью в видимой и ИК-областях спектра и высокой механической прочностью, превышающей в 3-5 раз механическую прочность керамики с микронными размерами частиц, а также получать материал для входной линзы фотоприемника, который при сохранении основных оптических параметров обладает необходимыми свойствами материала данного назначения - термостойкостью, теплофизической устойчивостью в потоке высокотемпературной плазмы. 5 з.п. ф-лы, 1 табл.

2402506
выдан:
опубликован: 27.10.2010
УСТРОЙСТВО ДЛЯ КРЕПЛЕНИЯ СТЕРЖНЕЙ-ПОДЛОЖЕК В РЕАКТОРЕ ВЫРАЩИВАНИЯ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ

Изобретение относится к производству полупроводниковых материалов, в частности к получению поликристаллического кремния осаждением на нагретые стержни-подложки в процессе водородного восстановления кремния из хлорсиланов. Устройство для крепления стержней-подложек 7 в реакторе снабжено металлическими охлаждаемыми токовводами 1, на конце которых выполнена резьба, по которой на токовводы установлены металлические переходники 2 с осевым коническим отверстием 3, сужающимся к нижней части, в осевое коническое отверстие 3 установлены два графитовых конусных клина 4 с конусностью по наружному диаметру, равной конусности конического отверстия переходника 2, на внутренней плоской поверхности графитовых конусных клиньев 4 по центральной оси выполнены продольные пазы 5, соответствующие поперечному сечению стержня-подложки 7, в которые по противолежащим граням установлены Г-образные металлические пластины 8, а высота графитовых конусных клиньев 4 превышает высоту конического отверстия 3 в переходнике 2. Технический результат изобретения заключается в увеличении производительности реактора за счет повышения надежности закрепления стержней-подложек в устройстве и сокращения промежуточных электрических контактов между токовводами и стержнями-подложками, а также в расширении технологических возможностей устройства и исключении необходимости выставки стержней-подложек в вертикальном положении при нижнем расположении токовводов. 2 з.п. ф-лы, 2 ил.

2398055
выдан:
опубликован: 27.08.2010
СПОСОБ ПРОИЗВОДСТВА ГРАНУЛИРОВАННОГО ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ В РЕАКТОРЕ С ПСЕВДООЖИЖЕННЫМ СЛОЕМ

Изобретение может быть использовано в производстве полупроводниковых приборов, элементов солнечных батарей. Реакционная труба расположена внутри корпуса реактора так, что внутреннее пространство корпуса реактора разделяется на внутреннюю зону, образованную внутри реакционной трубы, и внешнюю зону, образованную между корпусом реактора и реакционной трубой. Во внутренней зоне формируют слой частиц кремния и создают псевдоожиженный слой в реакторе введением псевдоожижающего газа в слой частиц кремния. Нагревают слой частиц кремния и в псевдоожиженный слой частиц кремния вводят реакционный газ, содержащий атомы кремния так, что происходит осаждение кремния во внутренней зоне. Реакционный газ, содержащий атомы кремния, выбирают из группы, состоящей из моносилана, дихлорсилана, трихлорсилана, тетрахлорида кремния или их смеси. Частицы поликристаллического кремния и отходящий газ выводят из реактора и поддерживают разность давлений между внутренней и внешней зонами в пределе 1 бар. Изобретение позволяет получать высокочистый поликристаллический кремний в реакторе с псевдоожиженным слоем, изготовленном из материала, пригодного для работы при атмосферном давлении, без ограничений по повышению реакционного давления. 13 з.п. ф-лы, 3 ил.

2397953
выдан:
опубликован: 27.08.2010
РЕАКТОР ВЫСОКОГО ДАВЛЕНИЯ С ПСЕВДООЖИЖЕННЫМ СЛОЕМ ДЛЯ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ

Изобретение относится к реактору высокого давления с псевдоожиженным слоем для получения гранулированного поликристаллического кремния, который содержит трубу реактора, оболочку реактора, окружающую трубу реактора, внутреннюю зону, образованную внутри трубы реактора, и внешнюю зону, образованную между оболочкой реактора и трубой реактора. При этом во внутренней зоне образуется псевдоожиженный слой частиц кремния и происходит осаждение кремния, а во внешней зоне псевдоожиженный слой частиц кремния не образуется и осаждение кремния не происходит. Кроме того, реактор высокого давления содержит элемент управления разностью давлений, поддерживающий разность между величинами давления во внешней зоне и во внутренней зоне в интервале от 0 до 1 бар. Изобретение позволяет поддерживать физическую стабильность трубы реактора и получать гранулированный поликристаллический кремний даже при сравнительно высоком давлении реакции. 25 з.п. ф-лы, 2 ил.

2397952
выдан:
опубликован: 27.08.2010
СПОСОБ И УСТРОЙСТВО ВЫРАЩИВАНИЯ КРИСТАЛЛОВ КРЕМНИЯ НА ПОДЛОЖКЕ

Изобретение относится к области выращивания из расплава поликристаллических слоев кремния, а именно к способам нанесения тонких пленок кремния на подложку для изготовления солнечных элементов. Устройство для выращивания поликристаллических слоев 5 кремния включает тигель 1 для расплава 2 кремния, подложку 4 из графитовой фольги, являющуюся электродом солнечного фотоэлемента, и капиллярный питатель, снабженный, по меньшей мере, одним вращающимся роликом 3, соприкасающимся с расплавом 2 кремния в тигле 1. Ролик может быть выполнен с текстурированной поверхностью. В процессе выращивания осуществляют перемещение ролика относительно подложки или подложки относительно ролика, ролик располагают над подложкой и/или под подложкой, роликом на подложку одновременно наносят несколько легирующих веществ, ролик и подложку располагают по отношению друг к другу таким образом, чтобы обеспечить нанесение кремния в горизонтальной или вертикальной плоскости. Изобретение позволяет снизить расход кремния за счет меньшей толщины слоев кремния (30-50 мкм) при ширине, равной ширине стандартной солнечной пластины, составляющей 156 мм, увеличить скорость нанесения до 5 см в минуту и более, уменьшить количество операций при изготовлении за счет удаления операции нанесения электрода и, в конечном счете, снизить себестоимость солнечного элемента при сохранении его функциональных характеристик. 2 н. и 4 з.п. ф-лы, 4 ил.

2390589
выдан:
опубликован: 27.05.2010
РАЗЪЕМНЫЙ РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ СТЕРЖНЕЙ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ

Изобретение относится к производству полупроводниковых материалов, в частности к получению исходного поликристалличсского кремния осаждением на нагретые стержни (основы) в процессе водородного восстановления хлорсиланов. Разъемный реактор установки для получения стержней поликристаллического кремния содержит верхнюю неподвижную часть с размещенными на ее верхней стенке токовводами с узлами крепления основ, установленную на вертикальной стойке с образованием под реактором погрузо-разгрузочной зоны и отделенную от нижней подвижной части горизонтальным разъемом, нижнюю подвижную часть реактора, разделенную дополнительным горизонтальным разъемом на донную часть и обечайку, системы электропитания и подачи компонентов. В донной части под центральной осью каждой U-образной кремниевой основы размещены опоры, включающие в себя заключенные в стаканы 18 штоки 20, установленные на пружины 19, в верхней части на штоки 20 установлены через электроизоляционные вставки 21 подставки 22 с двумя площадками 23, расположенными соосно с осями стержней U-образных кремниевых основ с регулируемым зазором между ее нижней частью и площадками, а пружины 19 установлены в стаканы 18 в предварительно сжатом состоянии с усилием, равным или превышающим вес выращиваемых стержней при достижении ими площадок. Кроме того, на стакан 18 по резьбе установлена накидная гайка 24, опирающаяся своим дном в верхний торец штока 20, а стаканы 18 установлены в резьбовых втулках 17, закрепленных на съемной раме, выполненной из соединенных ребрами двух концентричных колец, соосных с расположенными в верхней неподвижной части реактора токовводами с узлами крепления основ. Учитывая особые условия эксплуатации, электроизоляционные вставки выполнены из кварцевого стекла. Технический результат изобретения заключается в установлении в регулируемом диапазоне постоянных значений напряжений растяжения в стержнях и весовой нагрузки на узлы крепления основ после достижения ими значений, еще не приводящих к разлому и падению стержней, что позволяет повысить производительность реактора. 2 з.п. ф-лы, 3 ил.

2382836
выдан:
опубликован: 27.02.2010
Наверх