Выращивание монокристаллов из растворов с использованием растворителей, являющихся жидкими при обычной температуре, например из водных растворов – C30B 7/00
Патенты в данной категории
МИКРОФЛЮИДНОЕ УСТРОЙСТВО ДЛЯ КРИСТАЛЛИЗАЦИИ БЕЛКОВ В УСЛОВИЯХ НЕВЕСОМОСТИ
Изобретение относится к устройствам для кристаллизации белковых макромолекул в наземных условиях и условиях микрогравитации (в космосе). Микрофлюидное устройство содержит емкости с растворами различных белков 7, 9, 11 и осадителей 8, 10, 12, попарно подключенные через отдельные каналы 2, 3, 4, в которых установлены микрозатворы 13, к кристаллизационным камерам, при этом каналы 2, 3, 4 подключены к одному трубчатому элементу 1, внутри которого формируют отдельные кристаллизационные камеры 20-28 для каждого из белков, один конец трубчатого элемента 1 соединен через микрозатвор 16 с микронасосом 15, подающим из резервуара 14 в полость трубчатого элемента 1 рабочую среду 19, служащую для разделения полостей кристаллизационных камер 20-28, а другой конец трубчатого элемента 1 соединен со сборником 17 рабочей среды 19, причем для подачи растворов белков и осадителей через отдельные каналы 2, 3, 4 в кристаллизационные камеры 20-28 применяют отдельные микронасосы 5, 6, функционирующие по индивидуальным программам. Изобретение позволяет проводить эксперименты как по подбору условий кристаллизации, так и по кристаллизации различных белков в одном канале - благодаря конструкции с параллельными и независимыми друг от друга микронасосами. При работе с устройством возможно без дополнительных действий по перемещению кристаллов сразу отправлять их на последующие исследования. 3 з.п. ф-лы, 1 ил. |
2522613 выдан: опубликован: 20.07.2014 |
|
КРИСТАЛЛИЧЕСКИЕ АНТИТЕЛА ПРОТИВ hTNF
Настоящее изобретение относится к области иммунологии. Предложен способ порционной кристаллизации для кристаллизования антитела против hTNF , включающий комбинирование водного раствора антитела, соли неорганического фосфата и ацетатного буфера и инкубацию полученной смеси. Рассмотрены кристалл антитела, в частности антитела D2E7, полученный способом по изобретению, фармацевтические композиции, в том числе инъецируемые жидкие композиции, содержащие кристалл антитела, суспензии кристаллов, а также способы лечения связанного с hTNF расстройства и применение кристаллов антитела для получения фармацевтической композиции для лечения таких заболеваний. Настоящее изобретение может найти дальнейшее применение в терапии связанных с hTNF заболеваний. 10 н. и 19 з.п. ф-лы, 3 табл., 7 ил., 47 пр. |
2486296 выдан: опубликован: 27.06.2013 |
|
СПОСОБЫ ПОЛУЧЕНИЯ СЛОЖНОГО ГИДРОСУЛЬФАТФОСФАТА ЦЕЗИЯ СОСТАВА Cs5(HSO4)2(H2PO4)3
Изобретение относится к неорганической химии, в частности к синтезу гидросульфатфосфата цезия состава Cs5(HSO 4)2(H2PO4)3 , который может быть использован в качестве твердого протонпроводящего материала. Монокристаллы Cs5(HSO4) 2(H2PO4)3 получают путем приготовления водного раствора с мольным соотношением CsHSO 4:CsH2PO4, равным 2:3, насыщенного при температуре 50-75°С с последующей кристаллизацией методом управляемого снижения растворимости. Cs5(HSO4 )2(H2PO4)3 в виде поликристаллического порошка получают приготовлением водного раствора с мольным соотношением CsHSO4:CsH2 PO4, равным 2:3, насыщенного при температуре 50-75°С, высаливанием Cs5(HSO4)2(H 2PO4)3 этиловым спиртом с последующей просушкой при температуре до 80°С или методом твердофазного синтеза из шихты с мольным соотношением CsHSO4:CsH 2PO4, равным 2:3, при температуре 60-90°С. Полученное соединение CS5(HSO4)2 (H2PO4)3 обладает меньшим значением температуры фазового перехода (115,0°С) и большим значением протонной проводимости (1 Ом-1см-1 при температуре 120,0°С). Соединение Cs5(HSO 4)2(H2PO4)3 химически устойчиво до температуры 140,0°С. 3 н.п. ф-лы, 1 ил., 3 пр. |
2481427 выдан: опубликован: 10.05.2013 |
|
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНОГО ОКСИДА СО СТРУКТУРОЙ СИЛЛЕНИТА
Изобретение относится к области материаловедения, а именно к получению нового сложного оксида со структурой силленита, который является перспективным материалом для различных акусто- и оптоэлектронных устройств: пьезодатчиков, фильтров и линий задержки электромагнитных сигналов, электро- и магнитооптические измерителей напряженности полей, пространственно-временных и магнитооптических модуляторов. Сложный оксид со структурой силленита получают гидротермальным синтезом из щелочного раствора, при этом в исходную шихту, состоящую из NaBiO3 и V 2O5, добавляют редкоземельный элемент Sm в виде Sm2O3 с образованием сложного оксида состава |
2463394 выдан: опубликован: 10.10.2012 |
|
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ТЭНа ИГОЛЬЧАТОЙ ФОРМЫ
Изобретение относится к технологии взрывчатых веществ (ВВ) и может быть использовано в детонаторах и других взрывных устройствах, использующих процесс перехода горения ВВ во взрыв. Способ заключается в получении раствора ТЭНа в ацетоне, осаждении кристаллов ТЭНа путем добавления при перемешивании полученного раствора в осадитель в соотношении 1:(2-3), последующей фильтрацией полученного осадка и сушкой, при этом в качестве осадителя используют раствор изопропилового спирта в воде при соотношении (2-9):1. Раствор ТЭНа перед добавлением в осадитель нагревают до температуры 35-45°С. В осадитель может быть добавлен ультрадисперсный порошок алюминия. Игольчатая форма ТЭНа, полученная заявляемым способом, позволяет оптимизировать условия переходных процессов при формировании детонации в заряде ВВ. Способ является безопасным, т.к. отсутствуют операции интенсивного механического воздействия на ВВ и отсутствуют токсичные растворители, нагретые до температур, близких к температуре их кипения. 2 з.п. ф-лы, 2 ил., 3 пр. |
2463393 выдан: опубликован: 10.10.2012 |
|
СПОСОБ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ ОКСИДА ЦИНКА
Изобретение относится к производству синтетических кристаллов, в частности к способам получения кристаллов оксида цинка, используемого в различных областях электронной техники, где использование кварца невозможно или ограничено и может применяться в функциональной пленочной электронике, пьезотехнике и акустоэлектронике. Согласно способу используют брикетированную шихту из химического реактива оксида цинка, отожженную при температуре 1100°С в течение 20 часов, которую подвергают гидротермальной перекристаллизации из раствора едкого калия с добавлением ионов лития в герметичных сосудах из коррозионно-стойкого материала на ориентированные параллельно моноэдрическим граням (0001) затравочные пластины, вырезанные из предварительно выращенных гидротермальных кристаллов оксида цинка. Изобретение обеспечивает получение высококачественных кристаллов оксида цинка в промышленных масштабах. 1 пр. |
2460830 выдан: опубликован: 10.09.2012 |
|
ДЕТАЛЬ ИЗ ИСКУССТВЕННОГО КВАРЦА, СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ И ВКЛЮЧАЮЩИЙ ЕЕ ОПТИЧЕСКИЙ ЭЛЕМЕНТ
Изобретение относится к технологии изготовления детали из искусственного кварца для применения в качестве оптического элемента для ArF-литографии, подлежащего облучению лазерным светом, имеющим длину волны 200 нм или короче. Деталь из искусственного кварца выращена гидротермальным синтезом и содержит алюминий в количестве 200 частей на миллиард (ppb) или менее и натрий в количестве 100 ppb или менее. Технический результат изобретения заключается в создании детали из искусственного кварца с подавленной способностью претерпевать снижение пропускания в области длин волн лазерного света, которое вызывается длительным облучением лазерным светом, имеющим длину волны 200 нм или короче, таким как ArF-эксимерный лазерный свет. 3 н. и 4 з.п. ф-лы, 3 ил., 1 табл. |
2441840 выдан: опубликован: 10.02.2012 |
|
СПОСОБ ВЫРАЩИВАНИЯ ИГОЛЬЧАТЫХ КРИСТАЛЛОВ
Изобретение относится к области гальванопластики и может быть применено для изготовления деталей устройств нанотехнологического оборудования, использующих метод сканирующего зонда, например, кантилеверов. Кристаллы выращивают на подложке осаждением из электролита. На подложке образуют дефект дисклинационного типа в виде ямки пятиугольного сечения или микротрещины, используют в качестве дефекта плоские пентагональные кристаллы, пленки или покрытия, либо стык кристаллов. Образуя несколько дефектов дисклинационного типа, выращивают одновременно несколько игольчатых кристаллов в форме усов. Выращенные игольчатые кристаллы подвергают электрополированию, формируя острие. В качестве подложки может быть использована деталь устройства, на которой должен быть закреплен игольчатый кристалл. Технический результат - снижение трудоемкости изготовления игольчатых кристаллов. Способ уменьшает количество операций и позволяет выращивать кристаллы в нужном месте и нужных размеров. Это также повышает надежность работы оборудования, в котором используется игольчатый кристалл. 5 з.п. ф-лы, 4 ил. |
2430200 выдан: опубликован: 27.09.2011 |
|
СПОСОБ ВЫРАЩИВАНИЯ ЛАТЕРАЛЬНО РАСПОЛОЖЕННЫХ НИТЕВИДНЫХ НАНОКРИСТАЛЛОВ ОКСИДА ЦИНКА
Изобретение относится к области нанотехнологии и наноэлектроники, а конкретно - к получению латерально расположенных нитевидных нанокристаллов оксида цинка. Способ включает формирование на рабочей стороне подложки затравочного слоя оксида цинка, осаждаемого на горизонтальную поверхность рабочей стороны подложки сплошной пленкой. После осаждения затравочного слоя оксида цинка на него наносят слой защитного материала, литографически формируют локальные области затравочного слоя и слоя защитного материала с совпадающими торцевыми участками. Подложку погружают и выдерживают в химическом травителе оксида цинка для подтравливания торцевых участков затравочного слоя оксида цинка на величину, не меньшую 5 нм, а выращивание на затравочном слое латерально расположенных нитевидных нанокристаллов оксида цинка проводят погружением и выдержкой подложки в химическом растворе для выращивания нитевидных нанокристаллов оксида цинка рабочей стороной подложки вниз. Технический результат, заключающийся в повышении воспроизводимости процесса, достигается за счет использования нависающего края защитного слоя, который не позволяет расти нанокристаллам оксида цинка в вертикальном направлении. 2 з.п. ф-лы, 1 ил. |
2418110 выдан: опубликован: 10.05.2011 |
|
СПОСОБ ПОЛУЧЕНИЯ НИТЕВИДНЫХ КРИСТАЛЛОВ АЗИДА СЕРЕБРА
Изобретение относится к технологии выращивания нитевидных кристаллов неорганических соединений и может быть использовано для получения нитевидных монодисперсных кристаллов азида серебра с воспроизводимыми характеристиками. Способ осуществляют путем медленного испарения аммиака из 5% водно-аммиачного раствора мелкокристаллического порошка азида серебра при нормальных условиях в кристаллизаторе через отверстия полиэтиленовой пленки диаметром 0,5 мм, которой обтягивают кристаллизатор, со скоростью 0,407 г/сутки, при этом кристаллизатор с раствором помещают между двумя электродами в бесконтактное электрическое поле напряженностью 100÷10-6 В/см. Варьируя напряженность электрического поля при кристаллизации, можно получать кристаллы различного размера, с минимальным содержанием дефектов, улучшенными рабочими характеристиками (устойчивость к внешним воздействиям - свету, перепаду температур, действию электрического поля, пониженной чувствительностью к удару и трению при сохранении взрывчатых свойств), увеличенным сроком хранения. 1 табл., 6 ил. |
2404296 выдан: опубликован: 20.11.2010 |
|
НАСОС ДЛЯ ПОДАЧИ ЖИДКИХ СРЕД В УСТАНОВКАХ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ
Изобретение относится к технике, связанной с выращиванием кристаллов из пересыщенных водных растворов, и может быть использовано при скоростном выращивании профилированных кристаллов (например, типа KH2PO4, KD2PO4 , Ва(NO3)2 и др.). Насос для нагнетания пересыщенных водных растворов в установках скоростного выращивания кристаллов изготовлен из химически стойкого материала и содержит выполненный в виде единой детали корпус 1 с расположенным в его нижней части, по крайней мере, одним отводящим и направляющим жидкость соплом 5 и установленное в корпусе рабочее колесо 6 с лопастями 7, закрепленное на приводном валу 8. Нижняя часть корпуса насоса открыта снизу и в ней на уровне входных сопловых отверстий установлено рабочее колесо 6, имеющее дисковое основание 9, в центральной части которого выполнено отверстие 10 для входа жидкости, при этом диаметр d дискового основания 9 и его установка выполнены таким образом, что образуют минимально возможные вертикальный а и радиальный b кольцевые зазоры с корпусом 1 насоса (в пределах от 0,1% до 1% от величины d), что позволяет уменьшить гидравлические потери при работе насоса. Изготовленный таким образом насос обеспечивает высокую устойчивость процесса выращивания кристаллов и создает высокую интенсивность подачи питающего раствора на грани растущего кристалла. 3 з.п. ф-лы, 2 ил. |
2402645 выдан: опубликован: 27.10.2010 |
|
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ГРУППЫ KDP НА ЗАТРАВКУ, РАЗМЕЩАЕМУЮ В ФОРМООБРАЗОВАТЕЛЕ
Изобретение относится к способам получения ориентированных монокристаллов, применяемых в лазерной физике, акустоэлектронике, оптоэлектронике для реализации пьезоэлектрических и нелинейно-оптических эффектов. Способ осуществляют путем выращивания монокристаллов группы KDP для нелинейных оптических элементов на прямоугольную затравку соответствующего монокристалла из группы KDP, при этом используют затравку Z-среза 2, размер которой в направлении [100] определяют одним из меньших размеров (b) апертуры прямоугольного нелинейного оптического элемента, а ее длина (L) в направлении [010] равна сумме проекций высоты (с) и второго (а) большего значения апертуры нелинейного оптического элемента на плоскость (001) и описывается следующей формулой: L=cSin c+aCos c, где с - угол синхронизма, характерный для каждого из кристаллов группы KDP, размещают ее внутри разъемного формообразователя в виде замкнутой рамки, собранного из отдельных планок, каждую из которых устанавливают в следующей последовательности: на планке основания 1 формообразователя размещают затравку 2, вертикально указанной планке устанавливают следующую планку 3, затем относительно нее под углом синхронизма c устанавливают другую планку 5, последующую планку 6 относительно предыдущей 5 размещают под углом 90°, замыкающую планку 7 устанавливают перпендикулярно планке основания 1 формообразователя, что обеспечивает заданную форму и размеры выращенного монокристалла в виде заготовки. Изобретение позволяет перейти от традиционного технологического процесса, когда при свободном размещении затравки в реакционном объеме кристаллизатора получают кристалл с естественным для данного вещества габитусом, к технологическому процессу, который позволяет получить непосредственно в процессе выращивания монокристалл-заготовку заданных габаритов и формы для изготовления оптических элементов. 1 табл., 5 ил. |
2398921 выдан: опубликован: 10.09.2010 |
|
СПОСОБ ПОЛУЧЕНИЯ НАНОАЛМАЗОВ
Изобретение относится к технологии получения наноалмазов, имеющих большое промышленное значение в электронике в качестве высокотемпературных полупроводников, высокочувствительных счетчиков в сложных дозиметрических установках с мощным твердотельным лазером и т.д. Наноалмазы получают путем кристаллизации из водного раствора спирта (этилового или метилового), при этом для стабилизации процесса формирования наноалмазов спирт смешивают с аминокислотами, в полученную смесь дополнительно вводят, по крайней мере, один щелочной металл (литий или калий) для связывания свободных атомов водорода, выделяющихся в процессе разложения спирта, и процесс кристаллизации осуществляют в закрытой камере при температуре 400-700°С в течение 4-120 часов. Технический результат изобретения заключается в упрощении способа получения наноалмазов в сочетании с низкой стоимостью их получения. 3 з.п. ф-лы. |
2396377 выдан: опубликован: 10.08.2010 |
|
СПОСОБ ПОЛУЧЕНИЯ НА ЛИСТОВОМ МАТЕРИАЛЕ ДИФРАКЦИОННОЙ РЕШЕТКИ ИЗ МОНОКРИСТАЛЛОВ МЕТАЛЛОВ, ИХ СПЛАВОВ, ПОЛУПРОВОДНИКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Изобретение относится к средствам для специальных видов печати, позволяющим получать на листовом материале защитные изображения. Способ получения на листовом материале дифракционной решетки из монокристаллов металлов, их сплавов, полупроводников заключается в том, что на листовой материал наносят раствор соли кристаллизуемых материалов, пропитывают листовой материал этим раствором и воздействуют на этот материал импульсами лазерного излучения, в течение которых на листовом материале создается интерференционная картина из линий. При этом монокристаллы выращивают вдоль этих линий и из их совокупности образуют дифракционную решетку. Кроме того, в устройстве, осуществляющем данный способ, обеспечивается создание на находящемся в естественной среде листовом материале дифракционной решетки из монокристаллов металлов, их сплавов, полупроводников. Заявленное техническое решение направлено на создание на листовом материале (банкноте) надежной защиты от подделки, идентифицируемой в ультрафиолетовой, видимой и инфракрасных частях спектра. 2 н. и 2 з.п. ф-лы, 2 ил. |
2389048 выдан: опубликован: 10.05.2010 |
|
СПОСОБ СИНТЕЗА ПОЛУПРОВОДНИКОВЫХ КВАНТОВЫХ ТОЧЕК
Изобретение относится к получению полупроводниковых квантовых точек типов ядро и ядро-оболочка методом коллоидного синтеза, которые могут быть использованы в производстве различных люминесцентных материалов, а также в качестве основы для производства сверхминиатюрных светодиодов, источников белого света, одноэлектронных транзисторов, нелинейно-оптических устройств, фоточувствительных и фотогальванических устройств. Способ получения полупроводниковых квантовых точек на основе халькогенидов металлов II или IV группы включает синтез ядер нанокристаллов из прекурсора, содержащего халькоген, и прекурсора, содержащего металл II или IV группы, с использованием органического растворителя и модификатора поверхности, в качестве которого используют (аминоалкил)триалкоксисиланы. Синтез ядер осуществляют при постоянной температуре в пределах от 150 до 250°С в течение от 15 с до 1 часа и дополнительно проводят обработку реакционной смеси, содержащей ядра нанокристаллов, УФ-светом в течение 1÷10 мин и ультразвуком в течение 5÷15 мин. Технический результат заключается в повышении фотостабильности полупроводниковых квантовых точек до 34%, способности диспергироваться как в неполярных, так и в полярных растворителях, при сохранении и увеличении квантового выхода. 8 з.п. ф-лы, 1 табл., 6 ил. |
2381304 выдан: опубликован: 10.02.2010 |
|
УСТАНОВКА ДЛЯ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ ИЗ РАСТВОРОВ
Изобретение относится к технике выращивания кристаллов из растворов солей, в частности для выращивания кристаллов группы KDP (КН2РO4), которые широко применяются для изготовления элементов нелинейной оптики. Установка содержит кристаллизационный стакан 1, крышку 2 кристаллизационного стакана, платформу 4 с затравочным кристаллом 5 и механизм герметизации затравочного кристалла. В крышке 2 выполнено эксцентрично расположенное герметично закрываемое направляющей втулкой 11 отверстие 10 для ввода механизма герметизации затравочного кристалла 5, который выполнен в виде поджимаемого к поверхности платформы 4 колпачка 6, шарнирно установленного на L-образной штанге 7, имеющей возможность перемещения соосно направляющей втулке 11. Внутри штанги 7 выполнен канал 9 для подключения полости колпачка 6 к источнику давления. Для подключения полости колпачка 6 к каналу 9 внутри L-образной штанги 7 применен гибкий шланг 12. Поджатие колпачка 6 к платформе 4 обеспечивают воздействием груза или воздействием пружины на свободный конец штанги 7. В качестве источника давления, подаваемого внутрь колпачка, используют атмосферный воздух. 4 з.п. ф-лы, 2 ил. |
2381303 выдан: опубликован: 10.02.2010 |
|
СПОСОБ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛОВ БЛАГОРОДНОГО МЕТАЛЛА ИЛИ ЕГО СОЛИ НАНО- И/ИЛИ МИКРОРАЗМЕРОВ
Изобретение относится к технологии получения монокристаллов благородного металла или его соли нано- и/или микроразмеров (например, золота, двухлористой платины и др.) и может быть использовано при создании новых наноматериалов для микро- и оптоэлектроники, медицины. Способ осуществляют химическим восстановлением ионов благородного металла из водного раствора его соединения, при этом в качестве восстановителя используют анионный полиэлектролит и процесс ведут при концентрации ионов металла 0,1-5 мг-ион/дм 3 и концентрации полиэлектролита 5-350 мг/дм3 . Процесс может быть интенсифицирован при повышении температуры в диапазоне 20-60°С и/или освещенности 500-3000 люкс. Изобретение позволяет получать нано- и микромонокристаллы в свободном объеме жидкости без примеси частиц золя при обеспечении их размеров в заданном диапазоне. 8 з.п. ф-лы, 1 табл., 5 ил. |
2358042 выдан: опубликован: 10.06.2009 |
|
МОНОКРИСТАЛЛ ГЕКСАГИДРАТА СУЛЬФАТА ЦЕЗИЯ-НИКЕЛЯ, СПОСОБ ЕГО ВЫРАЩИВАНИЯ И ПРИМЕНЕНИЕ В КАЧЕСТВЕ ФИЛЬТРА УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ
Изобретение относится к области кристаллографии и может быть использовано для выращивания монокристаллов гексагидрата сульфата цезия-никеля Cs2Ni(SO4)2 ·6H2O, которые предназначены для применения в качестве фильтров ультрафиолетового излучения в приборах обнаружения источников высокотемпературного пламени. Монокристалл выращивают из маточного раствора методом охлаждения. Предварительно маточный раствор и кристаллизатор с заранее размещенным внутри него затравочным кристаллом перегревают на 8-9°С выше температуры насыщения раствора. Затем заливают раствор в кристаллизатор, понижают температуру раствора до температуры, меньшей температуры насыщения на 0.1-0.5°С, начинают перемешивание раствора, термостатируют раствор при указанной температуре в течение 20-28 часов, после чего производят поэтапное снижение температуры раствора, на первом этапе температуру раствора снижают на 0.5-2°С, а на втором этапе снижение температуры ведут со скоростью от 0.6°С до 4°С в сутки, по завершении второго этапа раствор сливают, снижают температуру внутри кристаллизатора до комнатной и затем извлекают монокристалл из кристаллизатора. Монокристалл сохраняет термостабильность неограниченное время вплоть до температуры 130°С, что повышает эксплуатационную надежность приборов, в которых он используется, и пропускает ультрафиолетовое излучение в диапазоне волн от 220 до 320 нм. Приведены параметры решетки кристалла, ( ): а=6.3576(8), b=12.7660(17), с=9.2550(10), =106.97(01)°, V=718.4 3, Z=2, dвыч=2.887 г·см -3. 3 н. и 6 з.п. ф-лы, 3 ил. |
2357020 выдан: опубликован: 27.05.2009 |
|
СПОСОБ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛОВ НЕ РАСТВОРИМЫХ В ВОДЕ СОЛЕЙ
Изобретение относится к материаловедению, а именно к методам получения монокристаллов для кристаллографии, оптики и электроники. Сущность изобретения: способ заключается в создании пересыщения в растворе, которое создают в средней камере трехкамерного электролизера путем поступления в нее из одной из боковых камер через катионообменную мембрану катионов синтезируемой соли, и путем поступления анионов синтезируемой соли из другой боковой камеры через анионообменную мембрану, причем процесс ионного обмена интенсифицируют электролизом при помещении электродов в боковые камеры, переключая полярность электродов через каждые 5-60 с. Изобретение позволяет получать монокристаллы нерастворимых в воде солей больших размеров с высокой производительностью. |
2350698 выдан: опубликован: 27.03.2009 |
|
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛОВ ИОДАТА ЛИТИЯ ДЛЯ ШИРОКОПОЛОСНЫХ ПРЕОБРАЗОВАТЕЛЕЙ УЛЬТРАЗВУКА
Изобретение относится к области физической и технической акустики твердого тела и может быть использовано в радиоэлектронике, автоматизации технологических процессов, материаловедении, в частности, в области практического применения пьезоэлектрических свойств кристаллов при изготовлении из них пьезоэлектрических преобразователей для приборов ультразвукового неразрушающего контроля. Кристаллы иодата лития для широкополосных преобразователей ультразвука получают из водного раствора методом выпаривания при контролируемых кислотности раствора и температуре, при этом кислотность рН раствора поддерживают равной 0,8, а в раствор добавляют иодат цезия в количестве 0.2 мас.%. Изготовленные данным способом кристаллы йодата лития позволяют получить на их основе широкополосные преобразователи ультразвука с существенным увеличением эффективности преобразования, что значительно повышает диапазон их использования, приводит к более высокому значению коэффициента электромеханической связи, т.е. к более высокому коэффициенту полезного действия при практическом применении преобразователей. 1 табл. (56) (продолжение): CLASS="b560m"abstract. YAKUSHEV V.G. et al. Influence of the content of the solution upon the growth and the properties of lithium iodate crystals. "Izvestiya Sibirskogo Otdeleniya Akademii Nauk SSSR, Seriya Khimicheskich Nauk", (5), 1985, p.78-82, STN БД С A, AN 104:43299, abstract. SU 1535077 A1, 20.02.1996. |
2347859 выдан: опубликован: 27.02.2009 |
|
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛИЧЕСКОГО НИТРИДА УГЛЕРОДА C 3N4
Изобретение относится к области химии и может быть использовано для синтеза кристаллического нитрида углерода C 3N4. Предварительно рассчитывают количества нитрида углерода C3N 4 и тетрахлорида углерода CCl4, отвечающих уравнению реакции 3CCl4+4NН 3=C3N4+12НСl. Далее в реакционную камеру вводят рассчитанное количество жидкого NH3 в герметичном сосуде и тетрахлорид углерода CCl4. Камеру герметизируют, вскрывают в ней сосуд с NH3, нагревают до температуры 195-200° и выдерживают в течение 1,5-2 часов до окончания реакции и получения кристаллического нитрида углерода. Способ получения кристаллического нитрида углерода C 3N4 является экономичным, т.к. протекает при более низких температурах, скорость процесса образования кристаллического нитрида углерода высокая, что приводит к уменьшению времени синтеза. |
2337185 выдан: опубликован: 27.10.2008 |
|
СПОСОБ ВЫРАЩИВАНИЯ ПРОФИЛИРОВАННЫХ МОНОКРИСТАЛЛОВ ИОДАТА ЛИТИЯ ГЕКСАГОНАЛЬНОЙ МОДИФИКАЦИИ НА ЗАТРАВКУ, РАЗМЕЩАЕМУЮ В ФОРМООБРАЗОВАТЕЛЕ
Изобретение относится к способам получения ориентированных монокристаллов, применяемых в лазерной физике, акустоэлектронике, оптоэлектронике для реализации пьезоэлектрических и нелинейнооптических эффектов. Выращивание монокристаллов осуществляют из раствора на прямоугольную затравку, изготовленную из Z-среза монокристалла, размер которой в направлении [ ] значительно меньше, чем в направлении [ ], размещают ее внутри разъемного формообразователя в виде замкнутой рамки, собранного из отдельных планок, каждую из которых устанавливают относительно друг друга и торцов затравки под углами, обеспечивающими заданную форму и размеры растущего монокристалла в виде заготовки. При выращивании монокристалла для изготовления прямоугольной заготовки нелинейного оптического элемента формообразующие планки устанавливают исходя из условия соблюдения синхронизма, обеспечивающего расположение прямоугольной заготовки под углом 30° к направлению [ ] растущего монокристалла. Изобретение позволяет перейти от традиционного технологического процесса, когда при свободном размещении затравки в реакционном объеме кристаллизатора получают кристалл с естественным для данного вещества габитусом, к технологическому процессу, который позволяет получить непосредственно в процессе выращивания монокристалл-заготовку, который по своим размерам и форме максимально приближен к размерам и форме изготавливаемого из него оптического элемента. 1 з.п. ф-лы, 1 табл., 4 ил. |
2332529 выдан: опубликован: 27.08.2008 |
|
СПОСОБ ВЫРАЩИВАНИЯ НИТЕВИДНЫХ МЕТАЛЛИЧЕСКИХ КРИСТАЛЛОВ
Изобретение относится к области гальваностегии и может быть применено для выращивания нитевидных кристаллов путем электроосаждения металлов из электролита. Нитевидные металлические кристаллы осаждают из электролита на электропроводную подложку, выполненную из материала с низкой теплопроводностью. Сначала на подложке электроосаждением выращивают кристаллы с пентагональной симметрией, после достижения выращенными кристаллами заданной длины подложку вынимают из электролита и выбирают из числа кристаллов, образовавшихся на подложке, пентагональный кристалл в форме трубки или стержня для использования его в качестве затравочного кристалла, к одному из его торцов приваривают металлическую проволоку, затем отрывают этот кристалл от подложки и, используя приваренную к нему проволоку в качестве держателя, опускают свободный торец кристалла в электролит, после чего ведут процесс выращивания нитевидного кристалла на этот торец, вынимая затравочный кристалл из электролита со скоростью роста нитевидного кристалла, при этом затравочный кристалл используют в качестве катода. Изобретение позволяет получать нитевидные пентагональные кристаллы высокой прочности и адсорбционной способности. 2 ил. |
2324772 выдан: опубликован: 20.05.2008 |
|
РОТОРНЫЙ ОСЕВОЙ НАСОС ДЛЯ ИСПОЛЬЗОВАНИЯ ПРЕИМУЩЕСТВЕННО В КРИСТАЛЛИЗАЦИОННЫХ УСТАНОВКАХ
Изобретение относится к технике, связанной с выращиванием кристаллов из растворов, и может быть использовано при скоростном выращивании профилированных кристаллов (например, КН 2РО4, KD2PO 4, BaNO3 и др.). Роторный осевой насос содержит ротор и выполненный из химически стойкого материала корпус с впускными окнами, входными и выходными сепараторами, снабженный, по крайней мере, одним направляющим раствор соплом. Корпус выполнен в виде одной неразборной детали с сепараторами в виде радиальных пластин, а ротор изготовлен таким образом, что содержит не более двух деталей из химически стойкого материала, при этом количество и размеры лопастей винта ротора соответствуют размерам секций входного сепаратора корпуса. Дополнительно ось ротора может армироваться металлическим стержнем, не имеющим контакта с раствором. Изготовленный таким образом насос имеет минимальное число щелей и резьбовых соединений, что уменьшает вероятность массовой кристаллизации и обеспечивает устойчивый рост кристаллов из раствора за счет устранения источников образования паразитных кристаллов. 7 з.п. ф-лы, 1 ил. |
2323280 выдан: опубликован: 27.04.2008 |
|
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ КВАРЦА
Изобретение относится к технологии выращивания оптических кристаллов, в частности монокристаллов кварца, используемого в радиоэлектронике, оптоэлектронике и оптике. Способ выращивания монокристаллов кварца в гидротермальных условиях в автоклаве путем перекристаллизации кварца из шихты на экранированные затравочные пластины, расположенные под углом к горизонтальной плоскости, при наличии температурного перепада между камерами роста и растворения, заключается в том, что перекристаллизацию ведут на затравочные пластины ZY ориентации, установленные радиально относительно вертикальной оси автоклава и под углом от 15 до менее 45° к горизонтальной плоскости, сторона затравочных пластин, направленная к камере роста, расположена выше, чем сторона пластин, направленная к оси автоклава, при этом экранируют верхние Z - поверхности и торцевые поверхности затравочных пластин. Изобретение позволяет выращивать монокристаллы высококачественного оптического кварца с повышенной скоростью. 3 ил. |
2320788 выдан: опубликован: 27.03.2008 |
|
СПОСОБ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ ОКСИДА ЦИНКА
Изобретение относится к производству синтетических кристаллов, в частности к способам получения кристаллов оксида цинка, которые могут быть использованы в пьезотехнике, акустооптоэлектронике и других областях науки и техники. Способ выращивания кристаллов оксида цинка в гидротермальных условиях заключается в перекристаллизации шихты из раствора едкого калия с добавлением ионов Li + в герметичных сосудах из коррозионно-стойкого материла на ориетированные параллельно моноэдрическим граням (0001) затравочные пластины, вырезанные из предварительно выращенных гидротермальных кристаллов оксида цинка, при этом в шихту дополнительно вводят нитрид галлия в количестве 0,01-0,5% от ее веса. Использование в шихте азотсодержащего вещества приводит к тому, что при захвате ионов азота решеткой в оксиде цинка возникает дырочная проводимость. Но этот захват осуществляется только при наличии ионов галлия, необходимых для попадания азота именно в решетку, а не в междоузлия, что обеспечивает кристаллам проводимость р-типа. |
2320787 выдан: опубликован: 27.03.2008 |
|
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО МАЛАХИТА
Изобретение относится к изготовлению искусственно выращенных камней и может быть использовано в ювелирной промышленности и ювелирно-прикладном искусстве. Способ получения синтетического малахита заключается в том, что готовят исходный рабочий раствор путем растворения основной углекислой меди в растворе карбоната аммония, содержащем избыточную мольную концентрацию аммиака по отношению к мольному содержанию углекислоты. Объем исходного рабочего раствора разделяют на две части перегородкой, проницаемой для жидкой и газовой фазы, причем в верхней части находится зона растворения, куда помещают твердую основную углекислую медь, а в нижней части находится зона кристаллизации, куда предварительно устанавливают металлические или полимерные элементы будущих изделий и где осуществляют последующее выпаривание раствора при температуре 40-95°С. После выпаривания конденсируют образующуюся парогазовую смесь, а полученный конденсат в виде водного раствора карбоната аммония возвращают в зону растворения для осаждения из упаренного раствора кристаллов синтетического малахита на поверхности металлических или полимерных элементов, установленных в зоне кристаллизации. В зоне растворения поддерживают температуру на 20-30°С ниже, чем в зоне кристаллизации. Концентрацию меди (II) в исходном рабочем растворе устанавливают равной 45-60 г/л. Техническим результатом изобретения является улучшение художественно-декоративных характеристик синтетического малахита, заключающихся в получении малахита с любыми разновидностями текстуры, прежде всего, почковидной и плисовой текстуры с разнообразной цветовой гаммой материала и узором, заранее задаваемыми художниками-дизайнерами для изготовления будущих изделий. 1 з.п. ф-лы, 1 ил., 1 табл. |
2308554 выдан: опубликован: 20.10.2007 |
|
УСТРОЙСТВО ДЛЯ КРИСТАЛЛИЗАЦИИ
Изобретение относится к области выращивания кристаллов белков и может быть использовано для исследования процессов кристаллизации и получения монокристаллов белков, в частности в условиях микрогравитации на борту орбитальной космической станции. Устройство для кристаллизации содержит кристаллизационную камеру с размещенными в ней камерой осадителя и камерой кристаллизационных ячеек, механизм запуска процесса кристаллизации. Кристаллизационная камера образована корпусной деталью и упругой мембраной, под которой размещены камера осадителя, имеющая форму цилиндрического углубления, в котором размещен раствор осадителя, и камера кристаллизационных ячеек, имеющая форму кольцевого углубления, расположенного концентрично камере осадителя, и содержащая распределенные по окружности посадочные места для кристаллизационных ячеек. Мембрана связана с механизмом запуска процесса кристаллизации, обеспечивающим деформированное состояние мембраны, при котором камера осадителя герметично перекрыта мембраной, и снятие деформированного состояния для обеспечения сообщения полостей камеры осадителя и камеры кристаллизационных ячеек. Каждая кристаллизационная ячейка содержит кристаллизационную подложку, на которой размещен раствор белка, мембрану с микропорами для прохождения паров осадителя, которая прижата к раствору белка жесткой перфорированной диафрагмой. Такое устройство компактно и обеспечивает получение биокристаллических пленок в условиях микрогравитации при сведении к минимуму вероятности смещения белкового раствора при доставке устройства на орбитальную станцию и возвращении его на Землю. 5 ил. |
2307204 выдан: опубликован: 27.09.2007 |
|
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ОБЪЕМНОГО МОНОКРИСТАЛЛИЧЕСКОГО ГАЛЛИЙСОДЕРЖАЩЕГО НИТРИДА (ВАРИАНТЫ)
Данное изобретение относится к получению кристалла галлийсодержащего нитрида с помощью аммиачного метода. Одним из вариантов изобретения является способ получения кристалла галлийсодержащего нитрида, в котором галлийсодержащий исходный материал кристаллизуют, по меньшей мере, на одном зародыше кристаллизации в присутствии содержащего щелочной металл компонента в содержащем азот растворителе, находящемся в сверхкритическом состоянии. Другим вариантом является способ получения объемного монокристаллического галлийсодержащего нитрида в автоклаве, который содержит стадии (i) создания сверхкритического аммиачного раствора, содержащего ионы щелочного металла и галлий в растворенном виде, посредством введения галлийсодержащего исходного материала в сверхкритический аммиачный раствор, содержащий ионы щелочных металлов, в котором растворимость галлийсодержащего нитрида проявляет отрицательный температурный коэффициент в указанном сверхкритическом аммиачном растворе, и (ii) кристаллизации указанного галлийсодержащего нитрида избирательно на зародыше кристаллизации из указанного сверхкритического аммиачного раствора с помощью отрицательного температурного коэффициента растворимости. Предложено также устройство для получения монокристаллического галлийсодержащего нитрида, содержащее автоклав, имеющий внутреннее пространство и содержащий, по меньшей мере, одно средство для нагревания автоклава, по меньшей мере, в двух зонах, имеющих разные температуры, при этом автоклав содержит средство в виде горизонтальной перегородки или горизонтальных перегородок, которое разделяет внутреннее пространство на зону растворения и зону кристаллизации и в котором зона растворения расположена над горизонтальной перегородкой или горизонтальными перегородками, в то время как зона кристаллизации расположена под указанной горизонтальной перегородкой или горизонтальными перегородками. Расположение исходного материала в верхней зоне, а зародыша кристаллизации в нижней зоне автоклава при наличии отрицательного температурного коэффициента растворимости кристаллизуемого вещества является оптимальным для кристаллизации нитрида. Изобретение обеспечивает возможность получения кристаллов монокристаллического галлийсодержащего нитрида, имеющих очень высокое качество. 14 н. и 89 з.п. ф-лы, 16 ил. |
2296189 выдан: опубликован: 27.03.2007 |
|
СПОСОБ ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ЙОДАТА ЛИТИЯ ИЗ РАСТВОРА ПРИ НЕПРЕРЫВНОМ ВЫТЯГИВАНИИ РАСТУЩЕГО КРИСТАЛЛА ЗА ПРЕДЕЛЫ РОСТОВОЙ КАМЕРЫ
Изобретение относится к способам получения ориентированных монокристаллов, применяемых в лазерной физике, акустоэлектронике, оптоэлектронике для реализации пьезоэлектрических и нелинейно-оптических эффектов. Способ осуществляют путем выращивания монокристаллов йодата лития гексагональной модификации на затравку z-среза заданной формы изотермическим испарением водного раствора йодата лития, при этом затравку, скрепленную с вытягивающим механизмом, размещают внутри и вблизи нижнего обреза соответствующей профилированной трубки, введенной в ростовую камеру и выходящей верхним обрезом за ее пределы, с последующим, по мере роста, вытягиванием растущего кристалла через эту трубку за пределы ростовой камеры. В процесса роста монокристаллов может осуществляться непрерывная подпитка маточного раствора. Изобретение позволяет выращивать кристаллы практически неограниченных размеров заданной высокой степени чистоты и структурной однородности. 1 з.п. ф-лы, 1 ил. |
2291919 выдан: опубликован: 20.01.2007 |