Газотурбинные установки, отличающиеся использованием продуктов сгорания в качестве рабочего тела – F02C 3/00
Патенты в данной категории
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ РАБОТЫ ОСЕВОГО МНОГОСТУПЕНЧАТОГО КОМПРЕССОРА
Изобретение относится к компрессоростроению и может быть использовано в теплоэнергетике, газоперекачивающих станциях, наземных и судовых транспортных средствах в стационарных газотурбинных установках, имеющих в своем составе осевой многоступенчатый компрессор. Способ повышения эффективности работы осевого многоступенчатого компрессора осуществляется путем впрыска воды. Воду в воздушный поток подают через калиброванные выпускные каналы, выполненные на поверхности лопаток направляющего аппарата. Впрыск воды проводят при температуре насыщения, соответствующей сумме локального давления в ступенях компрессора и перепада давления в указанных выпускных каналах. Впрыск воды начинают проводить в ступенях компрессора, где температура среды становится выше температуры насыщения воды при локальном давлении в ступенях компрессора. Достигается уменьшение потребляемой компрессором мощности за счет определения оптимальных места и параметров впрыскиваемой воды в проточную часть многоступенчатого компрессора. 1 з.п. ф-лы, 4 ил. |
2529289 выдан: опубликован: 27.09.2014 |
|
ГАЗОТУРБИННАЯ УСТАНОВКА С ВПРЫСКОМ ВОДЯНОГО ПАРА
Газотурбинная установка с впрыском водяного пара в контур ГТУ содержит компрессор для сжатия воздуха, топливный насос, средства для подачи топлива, камеру сгорания, газовую турбину, электрогенератор для выработки электроэнергии, механические средства для передачи механической энергии от турбины на работу компрессора и на вращение электрогенератора, котел-утилизатор. В камеру сгорания поступает сжатый компрессором воздух и подаваемое топливо и происходит их смешение, воспламенение и сгорание. Котел-утилизатор предназначен для нагрева подаваемой воды и получения пара за счет тепла продуктов сгорания, систему впрыска пара в камеру сгорания. Газотурбинная установка оснащена системой подачи активатора горения и системой смешения активатора горения с водяным паром, впрыскиваемым в камеру сгорания. Изобретение направлено на увеличение удельной мощности, повышение КПД, снижение удельного расхода топлива и увеличение (продление) ресурса, а также для снижения выбросов в атмосферу токсичных веществ, в частности оксидов азота (NOx) и угарного газа (CO) с продуктами сгорания. 1 ил. |
2527010 выдан: опубликован: 27.08.2014 |
|
ГАЗОТУРБИННАЯ УСТАНОВКА С ПОДАЧЕЙ ПАРО-ТОПЛИВНОЙ СМЕСИ
Газотурбинная установка с подачей паро-топливной смеси содержит компрессор для сжатия воздуха, топливный насос для подачи топлива, средства для подачи паро-топливной смеси, камеру сгорания, газовую турбину, электрогенератор для выработки электроэнергии, механические средства для передачи механической энергии от турбины на работу компрессора и на вращение электрогенератора, котел-утилизатор. В камеру сгорания поступает сжатый компрессором воздух и подаваемая паро-топливная смесь, далее происходит их смешение, воспламенение и сгорание. Котел-утилизатор предназначен для нагрева подаваемой воды и получения пара за счет тепла продуктов сгорания, смеситель для получения паро-топливной смеси. Газотурбинная установка оснащена системой подачи активатора горения и системой смешения активатора горения с паро-топливной смесью, подаваемой в камеру сгорания. Изобретение направлено на увеличение удельной мощности, повышение КПД, снижение удельного расхода топлива и увеличение (продление) ресурса, а также для снижения выбросов токсичных веществ, в частности оксидов азота (NOx) и угарного газа (CO) с продуктами сгорания, в атмосферу. 2 ил. |
2527007 выдан: опубликован: 27.08.2014 |
|
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ
Газотурбинный двигатель содержит компрессор, лопаточные диффузоры, канальный патрубок, кольцевую полость-ресивер, камеру сгорания, турбину. Турбина выполнена с охлаждаемым сопловым аппаратом, лопатки которого вдоль профиля пера от входной кромки имеют первую, вторую, третью и четвертую внутренние полости, соединенные с проточной частью через отверстия в пере лопатки, и перепускное устройство. Камера сгорания выполнена с межтрубным пространством между внутренним, наружным корпусом и кольцевой жаровой трубой с фронтовыми устройствами. Вход фронтового устройства кольцевой жаровой трубы соединен с проточной частью компрессора последовательно от компрессора через кольцевой сегмент лопаточного диффузора, выход которого соединен с входом пневмопровода - канального патрубка, выход которого соединен с входом в третью внутреннюю полость охлаждаемой лопатки соплового аппарата, один из выходов из которой соединен с входом во фронтовое устройство жаровой трубы. Кроме того, имеются еще два выхода из третьей внутренней полости. Один из выходов через межтрубное пространство камеры сгорания и кольцевую полость-ресивер соединен с входом в первую внутреннюю полость лопатки. Второй выход через окно в разделительной стенке соединен с четвертой внутренней полостью лопатки соплового аппарата. В сопловом аппарате имеются, по крайней мере, одна или несколько лопаток, у которых третья внутренняя полость имеет четвертый выход, соединяющий ее через окно в разделительной стенке со второй внутренней полостью. В этих лопатках располагается перепускное устройство, имеющее кинематическую связь с клапаном, расположенным на входе в топливную форсунку соединенного с этой лопаткой фронтового устройства. Вторая полость этих лопаток соединена со второй полостью лопатки, не имеющей перепускного устройства. Изобретение обеспечивает на различных режимах эффективную работу камеры сгорания газотурбинного двигателя и системы охлаждения высокотемпературной газовой турбины. 5 з.п. ф-лы, 11 ил. |
2525385 выдан: опубликован: 10.08.2014 |
|
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, РАБОТАЮЩИЙ НА ОБЕДНЕННОЙ ТОПЛИВНОЙ СМЕСИ
Газотурбинный двигатель, работающий на обедненной топливной смеси, содержит компрессор, каталитическую камеру сгорания, турбину, регенеративный теплообменник, горелку и клапан. Компрессор предназначен для сжатия рабочего газа для создания сжатого газа, при этом рабочий газ имеет концентрацию горючего компонента, которая меньше его предела воспламеняемости. Каталитическая камера сгорания предназначена для сжигания сжатого газа посредством каталитической реакции с помощью катализатора, размещенного в ней, для образования газообразных продуктов сгорания. Турбина выполнена с возможностью приведения ее в действие посредством газообразных продуктов сгорания, подаваемых из каталитической камеры сгорания. Регенеративный теплообменник предназначен для нагрева сжатого газа, подаваемого из компрессора в каталитическую камеру сгорания, посредством отработавшего газа, подаваемого из турбины по каналу для отработавшего газа в регенеративный теплообменник. Горелка предназначена для сжигания газа, отбираемого из компрессора, вместе с топливом для образования нагревающего газа и подачи нагревающего газа в канал для отработавшего газа. Клапан предназначен для регулирования количества отбираемого газа, подлежащего подаче в горелку. Изобретение позволяет не допускать снижения выходной мощности или потери давления в системе выпуска, что обеспечивает получение газовой турбины малого размера. 4 з.п. ф-лы, 3 ил. |
2521179 выдан: опубликован: 27.06.2014 |
|
ГАЗОТУРБИННАЯ УСТАНОВКА С ВПРЫСКОМ ЖИДКОСТИ В КОНТУР ГТУ
Изобретение относится к энергетике. Газотурбинная установка (ГТУ) с впрыском жидкости в контур ГТУ оснащена системой подачи и смешения активатора горения с жидкостью, подаваемой в контур ГТУ. Активатор горения представляет собой вещество, которое при повышенных температурах легко диссоциирует с образованием гидроксильных радикалов, что ускоряет сгорание топлива и продуктов его высокотемпературных превращений. Также представлена Газотурбинная установка с впрыском жидкости в контур ГТУ, содержащая двухступенчатый компрессор, перегреватель смеси жидкости и активатора горения, а также котел-утилизатор теплоты продуктов сгорания. Изобретение позволяет увеличить подачу в камеру сгорания мелкодисперсной влаги, благодаря чему удается повысить КПД и удельную мощность, уменьшить удельный расход топлива, увеличить ресурс за счет снижения температурных градиентов в контуре ГТУ и одновременно понизить в выбросах содержание СО и оксидов азота. 2 н.п. ф-лы, 2 ил. |
2517995 выдан: опубликован: 10.06.2014 |
|
СИСТЕМЫ И СПОСОБЫ ПРОИЗВОДСТВА СВЕРХЧИСТОГО ВОДОРОДА ПРИ ВЫСОКОМ ДАВЛЕНИИ
Изобретение относится к области химии. В первом реакторе производят экзотермически-генерированный продукт 4 синтез-газа, преобразуя первую часть потока углеводородного сырья. В теплообменной установке риформинга получают эндотермически-преобразованный продукт 7 синтез-газа, в котором, по меньшей мере, часть тепла используют от экзотермически-генерированного продукта синтез-газа. Поток 7 охлаждают. Охлажденный поток 8 пропускают через высокотемпературный реактор сдвига, в котором часть CO реагирует с паром, давая диоксид углерода и водород. Полученный поток 9 направляют в низкотемпературный реактор сдвига. Полученный поток 11 подают в сепаратор, который отделяет метан от комбинации экзотермически-генерированного продукта синтез-газа и эндотермически-преобразованного продукта синтез-газа, получая поток отходящего газа. При этом нагреватель сжигает, по меньшей мере, часть отходящего газа, используя выхлоп из газовой турбины в качестве окислителя, давая потоки перегретого пара и углеводородного сырья, используемые в экзотермически- и эндотермически-генерированном продукте синтез-газа. Генератор генерирует энергию, используя газовую турбину для приведения в действие установки по производству кислорода, обеспечивая кислород для генерирования синтез-газа. Изобретение позволяет получать водород высокой чистоты при высоком давлении. 3 н. и 26 з.п. ф-лы, 16 ил. |
2516527 выдан: опубликован: 20.05.2014 |
|
СИСТЕМА ВРАЩАЮЩИХСЯ В ПРОТИВОПОЛОЖНЫХ НАПРАВЛЕНИЯХ ВОЗДУШНЫХ ВИНТОВ, ПРИВОДИМЫХ В ДВИЖЕНИЕ ПРИ ПОМОЩИ ЭПИЦИКЛОИДАЛЬНОГО МЕХАНИЗМА, ОБЕСПЕЧИВАЮЩАЯ УРАВНОВЕШЕННОЕ РАСПРЕДЕЛЕНИЕ КРУТЯЩИХ МОМЕНТОВ МЕЖДУ ДВУМЯ ВОЗДУШНЫМИ ВИНТАМИ
Система вращающихся в противоположных направлениях воздушных винтов для газотурбинного двигателя летательного аппарата имеет в своем составе свободную силовую турбину, содержащую первый ротор, первый воздушный винт и второй воздушный винт, вращающиеся в противоположных направлениях, предназначенные для приведения их во вращение вокруг продольной оси системы воздушных винтов по отношению к статору этой системы, и устройство механической передачи. Устройство механической передачи содержит эпициклоидальный передаточный механизм, снабженный планетарной шестерней, центрированной на упомянутой продольной оси и приводимой в движение при помощи упомянутого первого ротора свободной силовой турбины, по меньшей мере один сателлит, находящийся в зубчатом зацеплении с упомянутой планетарной шестерней, держатель сателлита(ов), приводящий в движение упомянутый первый воздушный винт, а также коронную шестерню, находящуюся в зубчатом зацеплении с каждым сателлитом и приводящую в движение упомянутый второй воздушный винт. Свободная силовая турбина содержит также второй ротор, вращающийся в противоположном направлении по отношению к упомянутому первому ротору и приводящий во вращательное движение упомянутую коронную шестерню. Изобретение позволяет уменьшить общую массу системы винтов, уменьшить шум, снизить нагрузки, действующие на средства подвески двигателя. 2 н. и 7 з.п. ф-лы, 3 ил. |
2509903 выдан: опубликован: 20.03.2014 |
|
ТОПЛИВО СО СВЕРХНИЗКИМ СОДЕРЖАНИЕМ СЕРЫ И СПОСОБ УМЕНЬШЕНИЯ КОНДЕНСАЦИОННОГО СЛЕДА
Способ уменьшения конденсационного следа газотурбинного двигателя заключается в том, что подают топливо со сверхнизким содержанием серы, с концентрацией серы меньше чем одна часть на миллион, в камеру сгорания газотурбинного двигателя для снижения количества содержащих серу побочных продуктов, образующихся в выхлопе газотурбинного двигателя. Композиция авиационного топлива используется со сверхнизким содержанием серы, содержащая авиационное топливо, имеющее концентрацию серы меньше чем одна часть на миллион. Изобретение позволяет уменьшить или устранить конденсационный след с помощью топлива 30 со сверхнизким содержанием серы и обеспечивает следующие преимущества: устраняется проблема вызываемого авиацией изменения климата, стоимость топлива или масса воздушного судна не увеличиваются из-за добавок, потребление топлива не изменяется, а выброс твердых частиц снижается. 2 н. и 7 з.п. ф-лы, 1 ил. |
2505692 выдан: опубликован: 27.01.2014 |
|
СПОСОБ ОБРАБОТКИ КОМПОНЕНТОВ NOX И СИСТЕМА ВЫРАБОТКИ ЭЛЕКТРОЭНЕРГИИ
Система выработки электроэнергии для газотурбинного двигателя содержит первый компрессор, камеру (6) сгорания, расположенную ниже по потоку от первого компрессора, турбину, трехкомпонентный каталитический реактор, парогенератор рекуперации тепла, второй компрессор и электрогенератор. Турбина расположена ниже по потоку от камеры сгорания, имеет впуск, соединенный с выпуском камеры сгорания, и выпуск для частично отработанного выхлопного газа, содержащего 4% или менее кислорода. Трехкомпонентный каталитический реактор расположен ниже по потоку от турбины, имеет впуск для приема и контактирования частично отработанного выхлопного газа. Трехкомпонентный каталитический реактор выполнен с возможностью удаления, по существу, всех NOx компонентов, присутствующих в частично отработанном выхлопном газе. Изобретение направлено на повышение экономичности и эффективности обработки выхлопных газов. 2 н. и 6 з.п. ф-лы, 7 ил. |
2502883 выдан: опубликован: 27.12.2013 |
|
СПОСОБ РАБОТЫ КОМПРЕССОРНОГО ВОЗДУШНО-РЕАКТИВНОГО ДВИГАТЕЛЯ
Изобретение относится к области компрессорных воздушно-реактивных двигателей, представляющих собой реактивный воздушный винт (пропеллер с реактивным приводом). Камеру сгорания топлива и сверхзвуковое реактивное сопло компрессорного воздушно-реактивного двигателя вращают на конце полой лопасти воздушного винта центробежного компрессора с окружной скоростью концов лопастей >300 м/с. Газ, вытекающий из камеры сгорания топлива в сверхзвуковое реактивное сопло, перед поступлением в сопло предварительно смешивают в камере смешения газов с атмосферным воздухом, имеющим степень сжатия >40. Смешивание вытекающего из камеры сгорания топлива газа с атмосферным воздухом примерно той же плотности увеличивает массу газа, поступающего в сопло, что повышает летный КПД сопла и, соответственно, повышает КПД двигателя. 2 ил. |
2495269 выдан: опубликован: 10.10.2013 |
|
СПОСОБ УМЕНЬШЕНИЯ ВРЕДНЫХ ВЫБРОСОВ ИЗ ГАЗОТУРБИННОЙ УСТАНОВКИ С РЕГЕНЕРАЦИЕЙ ТЕПЛА
Способ уменьшения вредных выбросов из газотурбинной установки с регенерацией тепла заключается в ступенчатом сжатии окислителя с впрыском воды, подогревом сжатой смеси окислителя с водой, ступенчатом расширении рабочего тела и сжигании органического топлива в камерах сгорания перед промежуточными ступенями расширения с коэффициентом избытка окислителя меньше единицы, а в последней камере - больше единицы. Регулируют расходы окислителя, воды и топлива и поддерживают допустимые значения температуры стенок промежуточных ступеней расширения и их газодинамических трактов, а также температуру горения в последней камере сгорания. На вход и выход компрессора и между его ступенями осуществляют впрыск воды с суммарным расходом 20-40% от общего расхода рабочего тела на выхлопе. В камерах сгорания перед промежуточными ступенями расширения и в газодинамическом тракте поддерживают коэффициент избытка окислителя не ниже 0,5 и температуру стенок промежуточных ступеней расширения и газодинамического тракта не ниже 730 К. В выходной камере осуществляют процесс каталитического горения, обеспечивающий температуру 1500-1100 K, ниже температуры в предшествующих камерах сгорания, и коэффициент избытка окислителя как равный стехиометрическому, так и больше стехиометрического. Изобретение направлено на снижение вредных выбросов в газотурбинной установке при обеспечении высокого КПД преобразования тепла и исключении сажеобразования. 1 ил. |
2491435 выдан: опубликован: 27.08.2013 |
|
СПОСОБ УМЕНЬШЕНИЯ ВЫБРОСОВ ОКИСЛОВ АЗОТА ИЗ ГАЗОТУРБИННОЙ УСТАНОВКИ С РЕГЕНЕРАЦИЕЙ ТЕПЛА
Способ уменьшения выбросов окислов азота из газотурбинной установки с регенерацией тепла заключается в ступенчатом сжатии окислителя с впрыском воды, подогревом сжатой смеси окислителя с водой, ступенчатом расширении рабочего тела и сжигании органического топлива в камерах сгорания перед промежуточными ступенями расширения с коэффициентом избытка окислителя меньше единицы, а в последней камере - больше единицы. Регулируют расходы окислителя, воды и топлива и поддерживают допустимые значения температуры стенок промежуточных ступеней расширения и их газодинамических трактов, а также температуру горения в последней камере сгорания. На вход и выход компрессора и между его ступенями осуществляют впрыск воды с суммарным расходом 20-40% от общего расхода рабочего тела на выхлопе. В камерах сгорания перед промежуточными ступенями расширения и в газодинамическом тракте поддерживают коэффициент избытка окислителя не ниже 0,5 и температуру стенок промежуточных ступеней расширения и газодинамического тракта не ниже 730 К. В выходной камере осуществляют процесс горения, обеспечивающий температуру 1500-1100 К, ниже температуры в предшествующих камерах сгорания, и коэффициент избытка окислителя, близкий к стехиометрическому от 1,01 до 1,3. Изобретение направлено на снижение образования окислов азота при обеспечении высокого КПД преобразования тепла и исключении сажеобразования в газотурбинной установке. 1 ил. |
2490489 выдан: опубликован: 20.08.2013 |
|
ЭКОЛОГИЧЕСКИ ЧИСТАЯ ГАЗОТУРБИННАЯ УСТАНОВКА РЕГЕНЕРАТИВНОГО ЦИКЛА С КАТАЛИТИЧЕСКОЙ КАМЕРОЙ СГОРАНИЯ И СПОСОБ УПРАВЛЕНИЯ ЕЕ РАБОТОЙ
Экологически чистая газотурбинная установка регенеративного цикла с каталитической камерой сгорания содержит осевой компрессор, турбину, теплообменник-рекуператор, каталитическую камеру сгорания, соединяющий их газовоздушный канал, топливную систему с форсункой, систему автоматического регулирования и нагрузку. Газотурбинная установка также снабжена механизмом для распределения воздуха, устройством изменения крутящего момента на валу нагрузки и устройством поворота направляющего аппарата осевого компрессора, связанными с системой автоматического регулирования. Каталитическая камера сгорания выполнена в виде последовательно расположенных вихревой камеры смешения, объединенной с ней вспомогательной камерой и каталитического реактора. Теплообменник-рекуператор выполнен пластинчатым и снабжен устройством для определения температуры пластин, размещенным между ними в горячей части теплообменника-рекуператора. Форсунка топливной системы размещена в газовоздушном канале, соединяющем теплообменник-рекуператор с вихревой камерой смешения. Механизм для распределения воздуха установлен в газовоздушном канале за компрессором. Один из выходов механизма для распределения воздуха газодинамически связан с входом теплообменника-рекуператора, а другой выход - с входом вспомогательной камеры сгорания. Изобретение направлено на повышение эффективности и надежности работы газотурбинной установки с каталитической камерой сгорания, расширение ее функциональных возможностей, а также повышение экологической чистоты продуктов сгорания. 2 н. и 3 з.п. ф-лы, 3 ил. |
2489588 выдан: опубликован: 10.08.2013 |
|
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ
Газотурбинный двигатель включает в себя установленные последовательно по потоку первый компрессор, снабженный, по меньшей мере, одним рядом компрессорных лопаток, распределенных по окружности первого компрессора, камеру (23) сгорания и первую турбину, снабженную, по меньшей мере, одним рядом турбинных лопаток, распределенных по окружности первой турбины. Первый компрессор и первая турбина жестко соединены первым валом с возможностью вращения. Первая турбина приспособлена для воздействия на нормализованный расход газа через газотурбинный двигатель в зависимости от скорости вращения первой турбины. Ротор первой турбины расположен непосредственно за камерой сгорания ниже по потоку, так что не имеется сопловых лопаток или подобных отклоняющих газовый поток компонентов в зоне ниже по потоку от камеры сгорания и выше по потоку от первого ротора турбины. Газотурбинный двигатель также включает средства для регулирования скорости вращения первой турбины. Изобретение направлено на создание газотурбинного двигателя, в частности газотурбинного двигателя для приведения в движение летательного аппарата, потребление топлива которого ниже, чем у обычных газотурбинных двигателей. 3 н. и 30 з.п. ф-лы, 7 ил. |
2489587 выдан: опубликован: 10.08.2013 |
|
СПОСОБ РАБОТЫ И УСТРОЙСТВО ДЛЯ ВЕНТИЛЯЦИИ АВТОДОРОЖНЫХ ТОННЕЛЕЙ
Способ работы и устройство для вентиляции автодорожных тоннелей относится к установкам для вентиляции автодорожных тоннелей с одновременной выработкой электрической и тепловой энергии для энергоснабжения жилых зданий, социальных и промышленных объектов городов. Улучшение экономических показателей устройств для вентиляции в сочетании с их использованием для дополнительной выработки электрической и тепловой энергии достигается за счет того, что по трассе тоннелей на определенных расстояниях от входных и выходных порталов дополнительно размещают вытяжные вентиляционные шахты с блоками пылеочистки и газотурбинными мини-теплоэлектроцентралями. Подвод в тоннели большей части свежего атмосферного воздуха и удаление из тоннеля загрязненного воздуха производят за счет разрежения, создаваемого воздушными компрессорами дополнительных энергетических газотурбинных установок. Работу газовой турбины используют для выработки электроэнергии. Теплоту отработавших продуктов сгорания утилизируют в котле-утилизаторе, вырабатывают тепловую энергию и используют ее для теплоснабжения зданий. Продукты сгорания после котла-утилизатора сбрасывают через дымовую трубу в атмосферу и рассеивают на высоте 60-80 метров вредные газовые составляющие продуктов сгорания. Одновременно с вентиляцией тоннелей производят выработку электрической и тепловой энергии и ее подачу к потребителям. Вредные газовые составляющие продуктов сгорания рассеиваются в атмосфере на высоте 60-80 метров. 3 н. и 1 з.п. ф-лы, 2 ил. |
2487245 выдан: опубликован: 10.07.2013 |
|
СПОСОБ ИСПОЛЬЗОВАНИЯ УГЛЯ В ПАРОГАЗОВОЙ УСТАНОВКЕ НА ОСНОВЕ ПРОЦЕССА ПИРОЛИЗА
Изобретение может быть использовано в теплоэнергетике. Цикловый воздух нагревают в две ступени: после выхода из компрессора цикловой воздух подают на подогрев в высокотемпературный подогреватель высокого давления, затем его догревают до расчетной температуры непосредственно поступлением циклового нагретого воздуха в газовую турбину. В качестве топлива для паровоздушного котла с высокотемпературным воздухоподогревателем используют твердый продукт пиролиза - полукокс. Для догрева воздуха непосредственно перед газовой турбиной используют пиролизный газ. Парообразные продукты жидкой фракции продуктов пиролиза используют для нагрева исходного угля до расчетной температуры процесса пиролиза в пиролизере. Продукты пиролиза подвергают очистке от соединений серы и азота непосредственно в пиролизере. Технический результат заключается в расширении сферы применения парогазовых установок, повышении их экономичности и экологичности. 1 з.п. ф-лы, 1 ил. |
2487158 выдан: опубликован: 10.07.2013 |
|
ГАЗОТУРБИННАЯ УСТАНОВКА ДЛЯ ПЕРЕРАБОТКИ ПОПУТНОГО НЕФТЯНОГО ГАЗА В ЭЛЕКТРОЭНЕРГИЮ
Изобретение относится к области энергетики и может быть использовано в нефтедобывающей отрасли. Газотурбинная установка для переработки попутного нефтяного газа в электроэнергию содержит воздушный компрессор, турбину, камеру сгорания, электрогенератор и устройство подогрева воздуха после компрессора, включающее в себя теплообменный аппарат-регенератор, расположенный в выхлопной трубе. Камера сгорания с выхлопной трубой выполнена в виде наземной факельной установки сжигания попутного нефтяного газа. Компрессор оснащен электроприводом. Турбина со стороны выхода сообщена с окружающей средой с помощью автономной трубы. Наземная факельная установка со стороны подвода попутного нефтяного газа выполнена с устройством забора атмосферного воздуха. Изобретение направлено на расширение области применения газотурбинной установки, повышение эффективности использования углеродного топлива и улучшение экологии окружающей среды. 1 з.п. ф-лы, 2 ил. |
2482302 выдан: опубликован: 20.05.2013 |
|
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОДАЧИ ПОРОШКООБРАЗНОГО ТОПЛИВА В КАМЕРУ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ОТКРЫТОГО ЦИКЛА
Устройство для подачи порошкообразного топлива в камеру сгорания газотурбинного двигателя открытого цикла содержит топливную емкость, винтовой питатель, камеру сгорания, газовую турбину, воздушный компрессор, приводную сцепляющую муфту и генератор. Донная область топливной емкости сообщена с винтовым питателем, который оборудован питающей трубкой, соединенной с камерой сгорания. Девятый трубопровод сжатого воздуха для камеры сгорания снабжен датчиком расхода, который соединен с устройством для установки отношения. Устройство для установки отношения соединено с топливным контроллером, который соединен с приводной системой. Камера сгорания соединена с газовой турбиной с помощью трубопровода. Все вращающиеся валы, а именно вал газовой турбины, вал воздушного компрессора, вал приводной сцепляющей муфты и вал генератора, соединены между собой. Винтовой питатель выполнен закрытым. Топливная емкость представляет собой топливную емкость для порошкообразного топлива, полностью герметизированную с помощью крышки. При запуске устройства в работу обеспечена возможность поступления в камеру сгорания сжатого воздуха через третий трубопровод, емкость для хранения воздуха, способную выдерживать высокую температуру и высокое давление, и девятый трубопровод. Также обеспечена возможность генерирования сигналов датчика расхода и передачи их на устройство для установки отношения с последующей передачей на топливный контроллер и приводную систему и возможность подачи топлива в камеру сгорания и систему зажигания. Закрытый винтовой питатель и топливная емкость выполнены с возможностью предотвращения утечки и исключения протекания находящегося под высоким давлением горячего газа с топливом и возгорания питателя и топливной емкости, при этом обеспечена возможность прохождения горячего газа через трубопровод в газовую турбину для совершения работы при расширении и приведения во вращение газовой турбины. При вращении вала газовой турбины обеспечена возможность сжатия воздуха воздушным компрессором и возможность поступления сжатого воздуха через трубопроводы и в камеру сгорания для обеспечения процесса сгорания топлива. Также обеспечена возможность генерирования электрической энергии генератором и приведения в движение наземного или водного транспортного средства при вращении вала газовой турбины и приводной сцепляющей муфты. 2 н. и 24 з.п. ф-лы, 5 ил. |
2477378 выдан: опубликован: 10.03.2013 |
|
СПОСОБ И ОБОРУДОВАНИЕ ДЛЯ ОБРАБОТКИ ГАЗА, ПОЛУЧАЕМОГО ГАЗИФИКАЦИЕЙ ТВЕРДОГО ТОПЛИВА ПОД ДАВЛЕНИЕМ
Изобретение относится к области химии. По трубопроводу 1 через газопромывную колонну 2 первой стадии пропускают входящий газ после удаления HCN и NH3. Первая стадия предназначена для удаления H2S, COS и любых других серосодержащих соединений с получением обессеренного газа. Через теплообменник 15 проходит газообразная флегма, отводимая с прямого восстановления железной руды. Турбина 9 на валу содержит ступень дросселирования 8 и ступень компрессии 10. Ступень компрессии 10 предназначена для приема и сжатия газообразной флегмы, которая может быть пропущена через теплообменник 15, расположенный на трубопроводе 14. Обессеренный газ с первой стадии и сжатую газообразную флегму со ступени компрессии 10 турбины 9 на валу подают в газопромывную колонну 5 второй стадии для отделения СО2. Давление смеси чистого газа может быть затем снижено на ступени 8 дросселирования турбины 9 на валу. Газовую смесь с пониженным давлением затем пропускают через теплообменник 12 до ее возврата на стадию прямого восстановления железной руды в качестве газа-восстановителя и/или топливного газа. Турбина на валу соединена с генератором, который может быть использован в качестве электродвигателя. Изобретение позволяет повысить эффективность очистки газа. 2 н. и 9 з.п. ф-лы, 1 ил. |
2475515 выдан: опубликован: 20.02.2013 |
|
СПОСОБ ФОРСАЖА ТУРБОДВИГАТЕЛЯ И ДВИГАТЕЛЬ ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ)
Способ форсажа турбодвигателя заключается в подаче в камеру сгорания и/или перед компрессором и/или в ступень компрессора горючей жидкости или газа в количестве, обеспечивающем полное сгорание части их и охлаждение образовавшихся газов путем испарения излишков горючей жидкости или газа. При увеличении подачи горючей жидкости или газа до стехиометрического соотношения в камеру сгорания и/или в компрессор и/или в ступень компрессора производится возрастающая подача испаряющейся негорючей жидкости, которая после достижения стехиометрического соотношения замещается подачей горючей жидкости или газа. Негорючей жидкостью является вода или ее смесь с гликолями и/или смачивателями и/или масляной эмульсией, а горючей жидкостью является керосин или этиловый эфир, или спирт, или пропан, или метан. Изобретение направлено на повышение тяги двигателя и мощности турбины. 6 н. и 7 з.п. ф-лы, 6 ил. |
2474718 выдан: опубликован: 10.02.2013 |
|
СПОСОБ И УСТРОЙСТВО ПОЛУЧЕНИЯ ЭЛЕКТРОЭНЕРГИИ
Изобретение относится к энергетике. Способ получения электроэнергии осуществляет гармоничное комбинирование сил различной природы. Вместо стационарного генератора и динамики «рабочего тела» используют перемещение в «рабочей среде», в качестве которой выступает вода, «преобразователей-аккумуляторов» (контейнеров), в которых вследствие их перемещения - опускания на глубину и подъема на поверхность - преобразуются изменяющиеся внешние силовые параметры среды относительно «внутренних» «преобразователя-аккумулятора», и вследствие этого аккумулируется и фиксируется энергетический потенциал, который реализуется далее при подъеме «преобразователя-аккумулятора» на поверхность. Также предложено устройство для осуществления способа. Изобретение позволяет обеспечить получение электроэнергии экологически чистым способом. 2 н.п.ф-лы, 1 ил. |
2473816 выдан: опубликован: 27.01.2013 |
|
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ И АНТИКОРРОЗИОННОЕ ПОКРЫТИЕ ДЛЯ КОМПОНЕНТОВ ТУРБИН
Изобретение относится к нанесению покрытия на топливопроводящую деталь турбины, например на деталь газовой турбины. Покрытие наносят на поверхность детали из стали марки 16Мо3. Промежуточный слой нитрида титана наносят методом химического осаждения из газовой фазы при давлении от 20 мбар до 40 мбар в течение периода от 2 до 4 ч. Затем наносят верхний слой из -оксида алюминия при давлении от 80 мбар до 120 мбар в течение периода от 3 до 5 ч. Получается коррозионно-стойкое покрытие на поверхности детали газовой турбины. 3 н. и 8 з.п. ф-лы, 3 ил. |
2473713 выдан: опубликован: 27.01.2013 |
|
СПОСОБ ЭКСПЛУАТАЦИИ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ С ИНТЕГРИРОВАННОЙ ГАЗИФИКАЦИЕЙ, А ТАКЖЕ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА
Изобретение относится к способу эксплуатации энергетической установки интегрированным газифицирующим устройством. Углеводородсодержащее топливо газифицируют и в виде синтез-газа подают на сжигание к приданной газовой турбине горелке, причем при температуре процесса посредством мембраны от воздуха отделяют кислород, получают обедненный кислородом воздух, отделенный кислород подают к газифицирующему устройству для реакции с ископаемым топливом, для поддержания требуемой температуры процесса к мембране подводят энергию нагрева, энергию нагрева частично получают из синтез-газа, а частично - из кислорода и/или из обедненного кислородом воздуха в теплообмене с воздухом и нагретый воздух подают к мембране. Изобретение позволяет повысить эффективность нагрева воздуха, подаваемого к мембране. 2 н. и 20 з.п. ф-лы, 5 ил. |
2471080 выдан: опубликован: 27.12.2012 |
|
ТУРБОМАШИНА С ДИФФУЗОРОМ
Турбомашина содержит кольцевую камеру сгорания; центробежный компрессор; кольцевой диффузор, позволяющий рассеивать выходящий из компрессора газовый поток и направлять этот газовый поток к камере сгорания. Диффузор содержит радиально ориентированную входную часть, имеющую диффузорные каналы, соединенные с выходом компрессора; изогнутую промежуточную часть, и выходную часть, содержащую ряд спрямляющих лопаток, расположенных с промежутками по кругу; и внешний кожух, окружающий снаружи камеру сгорания и выходную часть. Проточный тракт в выходной части ограничен снаружи внешним кожухом. Внешний кожух имеет плечо, в которое упирается внешний выходной край промежуточной части. Изобретение направлено на ускорение сборки диффузора. 8 з.п.ф-лы, 5 ил. |
2470169 выдан: опубликован: 20.12.2012 |
|
СПОСОБ ПОВЫШЕНИЯ ДАВЛЕНИЯ ГАЗА
Способ повышения давления газа заключается в подаче в поток газа, движущийся по каналу, по направлению движения газа - жидкости в количестве более 10 процентов от массового расхода газа. Жидкость находится под давлением более 5 МПа. При этом температура газа более той, при которой происходит полное испарение жидкости. В качестве жидкости может быть использован керосин, вода или криогенная жидкость. Способ позволяет повышать давление газа (смеси) при снижении его (ее) температуры. Способ может быть использован в системах охлаждения элементов газотурбинных двигателей. 3 з.п. ф-лы, 3 ил. |
2468260 выдан: опубликован: 27.11.2012 |
|
СПОСОБ РАБОТЫ ГАЗОТУРБИННОЙ УСТАНОВКИ
Изобретение относится к газотурбинной технологии, используемой для получения работы и генерации электроэнергии или в качестве привода транспортных средств или компрессорных станций магистральных газопроводов. Способ работы газотурбинной установки включает подачу в камеру сгорания сжатых воздуха и метансодержащей парогазовой смеси, расширение продуктов их сгорания в газовой турбине, охлаждение продуктов сгорания путем испарения или перегрева водяного пара высокого давления, конденсацию водяного пара низкого давления, содержащегося в продуктах сгорания, испарение и перегрев конденсата с образованием водяного пара высокого давления, направляемого в газотурбинную установку. Природный газ последовательно смешивают с водяным паром высокого давления, нагревают в первом теплообменнике продуктами сгорания метансодержащей парогазовой смеси, пропускают через каталитический реактор с образованием метансодержащей парогазовой смеси, которую нагревают во втором теплообменнике, пропускают через второй каталитический реактор и подают в камеру сгорания. Изобретение направлено на снижение затрат энергии и вредных выбросов в атмосферу, увеличение надежности установки, упрощение ее конструкции и условий эксплуатации. 7 з.п. ф-лы, 1 ил. |
2467187 выдан: опубликован: 20.11.2012 |
|
СПОСОБ ДЛЯ СНИЖЕНИЯ ВЫБРОСОВ CO2 В ПОТОКЕ СЖИГАНИЯ И ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА
Способ для снижения выбросов в потоке сжигания, при котором вырабатывают энергию в узле газотурбинного двигателя. Поток выхлопных газов выходит из узла газотурбинного двигателя. Сжимают поток выхлопных газов, выходящий из узла газотурбинного двигателя, в первом компрессоре блока отделения СО2 . Отделяют СО2 от потока выхлопных газов посредством пропускания потока выхлопных газов через мембрану для получения потока продукта СО2 и обедненного СО2 потока выхлопных газов. Расширяют обедненный СО2 поток выхлопных газов в расширителе блока отделения СО2 для получения охлажденного обедненного СО2 потока выхлопных газов. Охлаждают воздух, который входит во второй компрессор узла газотурбинного двигателя, за счет пропускания охлажденного обедненного СО 2 потока выхлопных газов через теплообменник с указанным воздухом, входящим во второй компрессор. Достигается упрощение реализации способа при его высокой эффективности. 9 з.п. ф-лы, 3 ил. |
2466775 выдан: опубликован: 20.11.2012 |
|
ПАРОГЕНЕРИРУЮЩАЯ УСТАНОВКА
Парогенерирующая установка содержит агрегат наддува, горелочное устройство и парогенератор. Агрегат наддува состоит из газовой турбины и сопряженного с ней через силовую передачу, например вала, воздушного компрессора. Вход компрессора соединен с атмосферой. Парогенератор имеет каналы горячего и холодного теплоносителей соответственно с входами и выходами. Горелочное устройство снабжено входами для подачи воздуха, топлива и выходом горячего газа. Выход компрессора агрегата наддува соединен с входом для подачи воздуха горелочного устройства. Вход газовой турбины агрегата наддува соединен с выходом горелочного устройства через канал горячего теплоносителя парогенератора, а выход турбины - с атмосферой. Вход канала холодного теплоносителя парогенератора соединен с источником нагреваемой среды, а выход канала - с приемником нагреваемой среды. Установка дополнительно содержит воздушный дожимной компрессор, компрессор балластного газа, вторую газовую турбину, соответственно все с входами и выходами, и полезную нагрузку, например электрогенератор. Воздушный дожимной компрессор, компрессор балластного газа, вторая газовая турбина и электрогенератор установлены на одном валу. Выход воздушного компрессора агрегата наддува соединен с входом горелочного устройства через воздушный дожимной компрессор. Вход канала горячего теплоносителя парогенератора соединен с выходом горячего газа горелочного устройства через вторую газовую турбину. Выход канала горячего теплоносителя парогенератора дополнительно соединен с входом в горелочное устройство через компрессор балластного газа. Изобретение позволяет повысить КПД и ресурс работы установки, снизить ее габариты, материалоемкость и стоимость, уменьшить количество окислов азота, образующихся при работе. 1 ил. |
2466285 выдан: опубликован: 10.11.2012 |
|
КАМЕРНО-ИНЖЕКТОРНО-ТУРБИННЫЙ ДВИГАТЕЛЬ
Изобретение относится к двигателестроению, Камерно-инжекторно-турбинный двигатель содержит сообщенные между собой посредством вала турбину и компрессор с электрогенератором, камеры сгорания, системы управления, охлаждения и зажигания. Камеры сгорания расположены в системе охлаждения, выполненной в виде рубашки парообразования. Рубашка имеет для подачи воды подвод с термостатом и термочувствительный элемент и отвод. Каждая камера сгорания снабжена свечой зажигания и электроклапанами для подачи топлива, воздуха от компрессора и отработанного газа в проходную камеру на инжектор. Система управления выполнена из аккумулятора, выключателя, педали управления, тиристорного усилителя, электродвигателя скорости и электрораспределителя. Электрораспределитель состоит из ротора и микровыключателей, соединенных с электроклапанами и системой зажигания. Достигается уменьшение трудовых, материальных затрат при изготовлении, увеличение КПД двигателя и улучшение экологии за счет нейтрализации выхлопных газов. 3 ил. |
2465476 выдан: опубликован: 27.10.2012 |