Многоагрегатные газотурбинные установки, комбинации газотурбинных установок с другими устройствами (аспекты, в основном касающиеся таких устройств, см. соответствующие классы для этих устройств); приспосабливание турбинных установок для специальных целей – F02C 6/00

МПКРаздел FF02F02CF02C 6/00
Раздел F МАШИНОСТРОЕНИЕ; ОСВЕЩЕНИЕ; ОТОПЛЕНИЕ; ДВИГАТЕЛИ И НАСОСЫ; ОРУЖИЕ И БОЕПРИПАСЫ; ВЗРЫВНЫЕ РАБОТЫ
F02 Двигатели внутреннего сгорания
F02C Газотурбинные установки; воздухозаборники реактивных двигательных установок; управление подачей топлива в воздушно-реактивных двигательных установках
F02C 6/00 Многоагрегатные газотурбинные установки, комбинации газотурбинных установок с другими устройствами (аспекты, в основном касающиеся таких устройств, см. соответствующие классы для этих устройств); приспосабливание турбинных установок для специальных целей

F02C 6/02 .многоагрегатные газотурбинные установки, имеющие общий выход мощности
F02C 6/04 .газотурбинные установки, снабжающие нагретой или сжатой рабочей смесью другие устройства, например без механической мощности на выходе
 6/18 имеет преимущество
F02C 6/06 ..вырабатывающие сжатый газ
 6/10 имеет преимущество
F02C 6/08 ...причем газ отбирается из компрессора газотурбинной установки
F02C 6/10 ..подающие рабочую смесь потребителю, например для участия в химическом процессе, из которого рабочая смесь возвращается в газовую турбину установки
F02C 6/12 ...турбонагнетатели, т.е. установки для увеличения выходной механической мощности поршневых двигателей внутреннего сгорания путем увеличения давления подачи
F02C 6/14 .газотурбинные установки со средствами для хранения энергии, например для обеспечения пиковых нагрузок
F02C 6/16 ..для хранения сжатого воздуха
F02C 6/18 .использование отработанного тепла газотурбинных установок вне их, например газотурбинные теплофикационные установки
использование отработанного тепла в качестве источника энергии для холодильных установок  F 25B 27/02
F02C 6/20 .приспосабливание газотурбинных установок для приведения в действие транспортных средств

Патенты в данной категории

КОГЕНЕРАЦИОННАЯ ГАЗОТУРБИННАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА

Когенерационная газотурбинная энергетическая установка содержит компрессоры низкого и высокого давления, камеру сгорания, газовую турбину высокого давления и газовую турбину низкого давления, имеющие между собой газовую связь, теплофикационное устройство и основной электрический генератор, подсоединенный к газовой турбине высокого давления и используемый в качестве полезной нагрузки. Выход компрессора низкого давления присоединен к входу компрессора высокого давления. Теплофикационное устройство установлено между газовыми турбинами, снабжено внутренним горячим каналом, в котором размещен движущийся теплоноситель, представляющий собой частично отработавшие в газовой турбине высокого давления продукты сгорания, а также холодным каналом с помещенным внутри него другим движущимся теплоносителем, отводящим получаемую в результате теплообмена между горячим и холодным каналами внутри теплофикационного устройства тепловую энергию для ее использования вне газотурбинной энергетической установки. В когенерационной газотурбинной энергетической установке дополнительно установлено теплообменное устройство, содержащее взаимодействующие между собой посредством теплообмена горячий и холодный каналы. Вход горячего канала теплообменного устройства подсоединен к выходу из газовой турбины высокого давления, а выход горячего канала теплообменного устройства присоединен к входу горячего канала теплофикационного устройства. В качестве движущегося теплоносителя горячего канала теплообменного устройства использованы частично отработавшие продукты сгорания, поступающие из газовой турбины высокого давления. Вход холодного канала теплообменного устройства подсоединен к выходу из компрессора высокого давления, а выход холодного канала теплообменного устройства присоединен к входу камеры сгорания. В качестве движущегося теплоносителя холодного канала теплообменного устройства использована содержащая окислитель газообразная смесь, поступающая из компрессора высокого давления. Теплофикационное устройство выполнено с регулируемым теплосъемом. К газовой турбине низкого давления подсоединен дополнительный электрический генератор, используемый в качестве полезной нагрузки. Изобретение направлено на обеспечение регулирования режима когенерации, то есть количества вырабатываемой тепловой и электрической энергии, и на повышение коэффициента полезного действия. 5 з.п. ф-лы, 3 ил.

2528214
выдан:
опубликован: 10.09.2014
ПАРОГАЗОВАЯ УСТАНОВКА

Изобретение относится к энергетике. Парогазовая установка содержит газотурбинную установку, котел-утилизатор, паротурбинную установку, сбросный газоход, дымовую трубу, соединительные трубопроводы, внешний газоход, подключенные к внешнему газоходу горелочное устройство и пароперегреватель. Котел-утилизатор и пароперегреватель содержат модули поверхностей нагрева пароводяного контура паротурбинной установки. Внешний газоход выполнен в виде рециркуляционного контура, оборудованного вентилятором. Вход внешнего газохода подсоединен к котлу-утилизатору в зоне размещения модулей поверхностей нагрева, а выход выведен перед зоной размещения модулей поверхностей нагрева котла-утилизатора. Изобретение позволяет повысить эффективность использования теплоты газообразных продуктов сгорания и КПД установки. 10 з.п. ф-лы, 1 ил.

2528190
выдан:
опубликован: 10.09.2014
СПОСОБ ПЕРЕРАБОТКИ УГЛЕВОДОРОДНОГО ГАЗА В СТАБИЛЬНЫЕ ЖИДКИЕ СИНТЕТИЧЕСКИЕ НЕФТЕПРОДУКТЫ И ЭНЕРГЕТИЧЕСКИЙ КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к технологии переработки углеводородов, к способам и устройствам для переработки углеводородного газа в стабильные жидкие синтетические нефтепродукты. Способ переработки углеводородного газа в стабильные жидкие синтетические нефтепродукты, например в синтетическую нефть или синтетическое моторное топливо, предусматривает предварительную обработку исходного углеводородного газа в зависимости от его физико-химических свойств, например очистку от сероводородных соединений, и/или сепарирование и осушку, и/или компримирование, а также последующее разделение этого предварительно обработанного газа на два потока: основной поток, перерабатываемый в конечный продукт, и технологический поток, используемый для поднятия температуры основного потока газа в процессе получения конечного продукта, последующую переработку каждого из этих разделенных потоков: основного потока - каталитическим паровым риформингом с получением синтез-газа, последующим его охлаждением, переработкой в стабильную синтетическую нефть и, по необходимости, разделением синтетической нефти на фракции синтетического моторного топлива, переработку отделенного технологического потока осуществляют пропусканием через газотурбинную установку с получением электрической энергии и продуктов сгорания, при этом дополнительно от полученного паровым риформингом охлажденного синтез-газа отделяют избыточный водород, продукты сгорания пропущенного через газотурбинную установку технологического потока газа вначале дожигают вместе с избыточным водородом и частью технологического потока предварительно обработанного исходного углеводородного газа, а затем направляют на разогрев основного потока газа в процессе его конверсии паровым риформингом. Заявлен также энергетический комплекс для переработки углеводородного газа. Единым техническим результатом, достигаемым при осуществлении заявленной группы изобретений, является создание эффективных условий для протекания процесса получения синтетической нефти в реакторе Фишера-Тропша за счет стабилизации потока синтез-газа путем удаления из него избыточного водорода, а также создание эффективных условий для протекания процесса получения синтез-газа за счет разогрева основного потока газа в процессе его конверсии паровым риформингом продуктами, полученными от дожигания продуктов сгорания пропущенного через газотурбинную установку технологического потока газа вместе с избыточным водородом и частью технологического потока предварительно обработанного исходного углеводородного газа, и обеспечение оптимально устойчивого процесса конверсии основного потока газа за счет поддержания в автоматическом режиме его температуры в реакторе синтез-газа. 2 н. и 3 з.п. ф-лы, 1 ил.

2527536
выдан:
опубликован: 10.09.2014
ГАЗОТУРБИННАЯ УСТАНОВКА

Изобретение относится к энергетике. Газотурбинная установка содержит воздушный компрессор, газовую турбину и электрогенератор, установленные на одном валу, теплообменник с нагревающим и нагреваемым контурами, камеру сгорания, источник топлива и трубопроводные вентили. Дополнительно установка содержит установленные на отдельном валу воздушную турбину и потребитель мощности, второй теплообменник с нагревающим и нагреваемым контурами, потребитель горячего воздуха и потребитель продуктов сгорания. Изобретение позволяет повысить КПД установки при работе на низкокалорийном газообразном топливе, снизить эмиссию вредных веществ в продуктах сгорания на основных режимах работы и расширить диапазон технических эффектов достигаемых при использовании устройства. 12 з.п. ф-лы, 2 ил., 1 табл.

2520214
выдан:
опубликован: 20.06.2014
ТУРБОКОМПРЕССОР

Турбокомпрессор включает корпус турбокомпрессора, корпус подшипников с маслоподводящими каналами, ротор, на валу которого расположены подшипники, маслосливную полость, маслосливную трубку. В корпусе турбокомпрессора установлен поворотный угольник с болтом поворотного угольника. Осевое отверстие болта связано с маслосливной полостью. Выход поворотного угольника через дренажную трубку связан с картером двигателя. Достигается повышение надежности турбокомпрессора за счет исключения подпора стекающего масла в маслосливной трубке, тем самым исключается эксплуатационный дефект «унос масла» и за счет увеличенного расхода масла улучшается охлаждение турбокомпрессора. 2 ил.

2519541
выдан:
опубликован: 10.06.2014
ТУРБОБЛОК

Турбоблок газоперекачивающего агрегата (ГПА) или газотурбинной электростанции (ГТЭС) содержит газотурбинный двигатель (ГТД), кожух газотурбинного двигателя, компрессор (нагнетатель) с лабиринтными уплотнениями вала, трансмиссию, кожух трансмиссии с фланцами, расположенный между кожухом газотурбинного двигателя и компрессором. Кожух трансмиссии снабжен внутренней стенкой, образующей совместно с его наружной стенкой воздуховод, соединяющий полость кожуха газотурбинного двигателя с зоной перед лабиринтными уплотнениями компрессора через отверстия, выполненные во фланце кожуха трансмиссии, и отверстия, выполненные во внутренней стенке кожуха трансмиссии, соединенные с ним через радиальный канал, образованный скрепленными с внутренней стенкой кожуха перегородками. Использование предлагаемого изобретения позволяет повысить давление в зоне разрежения перед уплотнениями компрессора, что, в свою очередь, будет препятствовать проникновению масла и его паров из компрессора в полость кожуха ГТД и предотвратит возникновение аварийных ситуаций. 5 ил.

2518919
выдан:
опубликован: 10.06.2014
СПОСОБ РАБОТЫ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Устройство и способ работы авиационного газотурбинного двигателя включающий процесс сжатия в компрессорах, подвода тепла в камере сгорания, расширения на турбинах и реактивном сопле. Процесс расширения на рабочих лопатках турбины высокого давления осуществляют в сверхзвуковом потоке и используют создаваемую в этом потоке инверсию населенности для организации когерентного излучения. Двигатель включает компрессор каскада низкого давления, компрессор каскада высокого давления, камеру сгорания, турбину высокого давления, турбину низкого давления, реактивное сопло. Дополнительно введена пара бочкообразных резонаторов, внутренний и наружный, с полупрозрачным элементом в наружном резонаторе, обтюратор и биротативное колесо активного облопачивания. Рабочие лопатки турбины высокого давления выполнены в виде последовательности сопел Лаваля, за которыми установлена пара бочкообразных резонаторов, и далее по потоку газа установлены обтюратор и биротативное колесо активного облопачивания. Группа изобретений позволяет создать качественно новый способ работы с одновременным расширением функциональных возможностей авиационного газотурбинного двигателя путём его работы в качестве газодинамического лазера. 2 н.п. ф-лы, 1 ил.

2516985
выдан:
опубликован: 27.05.2014
ДОЗВУКОВЫЕ И СТАЦИОНАРНЫЕПРЯМОТОЧНЫЕ ВОЗДУШНО-РЕАКТИВНЫЕ ДВИГАТЕЛИ

Аппарат для взаимодействия с воздухом или газом, способный выполнять функцию компрессора или детандера, содержит корпус, вал для передачи крутящего момента, ротор. Вал для передачи крутящего момента проходит через корпус с возможностью вращения вокруг оси и функционально соединен с ротором. Ротор позволяет поддерживать его устойчивое вращение при окружной скорости обода, составляющей приблизительно от 2000 до 5400 футов в секунду. Кольцевая область вокруг ротора и внутри корпуса образует проход для потока. Корпус также включает выпускное отверстие для потока, образующее проход для вытекания высокоэнергетического газа или воздуха наружу из кольцевой области или его втекания в кольцевую область. Вал содержит материал с высокой удельной прочностью на сжатие или растяжение и имеет проходы для потока, обеспечивающие прохождение потока воздуха или газа к ротору или от ротора. Некоторые части вала обмотаны намотками из волоконного жгута из материала с высокой удельной прочностью на растяжение, натягиваемыми примерно до половины их предела прочности на разрыв. Ротор окружает часть вала внутри корпуса и имеет проходы для потока газа или воздуха, пропускающие поток в радиальных направлениях и задерживающие поток от ротора в осевом направлении. Ротор содержит материал с высокой удельной прочностью на растяжение и компрессионный материал, сжатый намотками из волоконного жгута с высокой удельной прочностью на растяжение, натягиваемыми примерно до половины их предела прочности на разрыв. Материал с высокой удельной прочностью на сжатие функционально соединен с валом сжатием или, по меньшей мере, одной намоткой из волоконного жгута. Аппарат, способный выполнять функции компрессора, в функции компрессора содержит кольцевую область вокруг ротора и внутри корпуса, выполненную с возможностью формирования в процессе работы прохода для воздуха или газа от ротора к выпускному отверстию для потока в корпусе, внутри которого воздух или газ проходит по спирали в радиальном направлении от ротора наружу через кольцевую область и с уменьшением скорости. При этом кольцевая область обеспечивает в процессе работы выход потока воздуха или газа в радиальном направлении от ротора наружу. Реактивный и механический двигатели содержат описанный выше аппарат в качестве компрессора. Изобретение направлено на уменьшение расхода топлива, повышение кпд, снижение выбросов CO2 и снижение стоимости двигателя. 3 н. и 13 з.п. ф-лы, 11 ил., 8 табл.

2516075
выдан:
опубликован: 20.05.2014
КОСМИЧЕСКАЯ ЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА С МАШИННЫМ ПРЕОБРАЗОВАНИЕМ ЭНЕРГИИ

Космическая энергетическая установка с машинным преобразованием энергии содержит замкнутый контур с газообразным рабочим телом, реализующим замкнутый термодинамический цикл Брайтона. В состав замкнутого термодинамического цикла входят источник тепла, турбокомпрессор, кинематически связанный с электрогенератором, регенератор тепла, теплообменник, теплопередающим трактом включенный в контур с газообразным рабочим телом, теплопринимающим трактом - в замкнутый контур с жидким рабочим телом для отвода низкопотенциального тепла, включающий также устройство для прокачки жидкого рабочего тела через контур, и холодильник-излучатель тепла в космическое пространство. Устройство для прокачки выполнено в виде турбонасосного агрегата, кинематически связанного с электрогенератором. Теплообменник выполнен в виде генератора перегретого пара, использующего низкопотенциальное тепло, отбираемое от газообразного рабочего тела энергоустановки. Холодильник-излучатель выполнен в виде конденсатора пара с функцией последующего охлаждения конденсата. Вход в насос турбонасосного агрегата сообщен с выходом проточного тракта холодильника-излучателя, выход насоса - с входом в теплопринимающий тракт теплообменника-парогенератора - в противоток его теплопередающему тракту. Вход в турбину турбонасосного агрегата сообщен с выходом теплопринимающего тракта теплообменника-парогенератора, а ее выход - с входом в гидравлический тракт холодильника-излучателя. Изобретение направлено на повышение энергомассовых характеристик космических энергетических установок с машинным преобразованием энергии путем уменьшения доли сбрасываемого в окружающее пространство тепла. 1 ил.

2508460
выдан:
опубликован: 27.02.2014
УСТРОЙСТВО ДЛЯ ЗАПУСКА ПАРОВОЙ ТУРБИНЫ ПОД НОМИНАЛЬНЫМ ДАВЛЕНИЕМ

Изобретение относится к энергетике. Система генерации электроэнергии с комбинированным циклом, содержащая внешний байпасный контур управления запуском с регулирующим клапаном для паровой турбины, облегчающий работу энергетической установки при максимальном давлении. Также представлены устройство для регулирования потока пара в паровую турбину при быстром запуске установки с комбинированным циклом и способ запуска системы генерации электроэнергии с комбинированным циклом. Изобретение позволяет управлять дросселированием в тяжелых условиях эксплуатации в ходе запуска паровой турбины под высоким давлением. 3 н. и 7 з.п. ф-лы, 6 ил.

2506440
выдан:
опубликован: 10.02.2014
СПОСОБ КОНВЕНТИРОВАНИЯ ДВУХКОНТУРНОГО ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ В ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ НАЗЕМНОГО ПРИМЕНЕНИЯ

Способ конвертирования двухконтурного турбореактивного двигателя в газотурбинный двигатель наземного применения, содержащего компрессор низкого давления с турбиной низкого давления, компрессор высокого давления с турбиной высокого давления, камеру сгорания и опоры, осуществляют путем подрезания верхней части лопаток компрессора низкого давления, расположенных во втором контуре. Компрессор высокого давления и турбину высокого давления оборудуют дополнительными ступенями. Устанавливают камеру сгорания, отношение длины которой L1 к ее исходной длине камеры сгорания L выбирают в пределах 0,7÷0,79. Кольцевую жаровую трубу крепят к наружному корпусу камеры сгорания посредством кронштейна, выполненного в виде кольцевой детали. Изобретение направлено на повышение мощности и к.н.д., снижение концентрации выбросов, повышение надежности работы камеры сгорания. 4 ил.

2499152
выдан:
опубликован: 20.11.2013
УНИВЕРСАЛЬНАЯ КОМПЛЕКСНАЯ ЭНЕРГОСИСТЕМА

Универсальная комплексная энергосистема для получения электричества, холода и тепла содержит ветродвигатель, агрегатированный с приводимым им через энергоузел компрессором, накопитель воздуха, теплообменник с горячим и холодным контурами, потребитель теплого воздуха, турбодетандер, агрегатированный с приводимым им электрогенератором, и потребитель холодного воздуха. Компрессор соединен газодинамически входом с атмосферой, а выходом - через горячий контур теплообменника с входом накопителя воздуха. Турбодетандер соединен газодинамически входом через запорный орган с выходом накопителя воздуха, а выходом с входом потребителя холодного воздуха. Вход и выход холодного контура теплообменника соединены между собой через потребитель теплого воздуха. Энергосистема включает источник природного газа повышенного давления, потребитель природного газа, дополнительный компрессор с приводом и дополнительный турбодетандер с потребителем мощности. Турбодетандер с потребителем мощности заключены в капсулу. Дополнительный компрессор газодинамически входом соединен с атмосферой, а выходом - через запорный орган с входом накопителя воздуха. Дополнительный турбодетандер газодинамически входом через запорные органы соединен с источником природного газа и с выходом накопителя воздуха, а выходом - через запорные органы с потребителем природного газа и со входом потребителя холодного воздуха. Изобретение позволяет стабильно и эффективно обеспечить потребителей заданным количеством электроэнергии, холода и тепла при пониженном уровне ветропотенциала

с дополнительным повышением потребительских свойств энергосистемы. 11 з.п. ф-лы, 2 ил.

2489589
выдан:
опубликован: 10.08.2013
КОМПРЕССОР ДЛЯ ГАЗОВОЙ ТУРБИНЫ

Компрессор для газовой турбины содержит кольцеобразный в поперечном сечении тракт течения для сжимаемой в нем среды, корпус, по меньшей мере, одно отверстие отбора в наружной стенке и, по меньшей мере, одно расположенное в корпусе отверстие. Тракт течения ограничен радиально снаружи кольцеобразной в поперечном сечении наружной стенкой. Корпус охватывает наружную стенку с образованием, по меньшей мере, одной расположенной между ними сборной камеры. Отверстие в наружной стенке предназначено для отвода в сборную камеру части протекающей по тракту течения среды. Отверстие в корпусе предназначено для удаления отведенной части среды из корпуса. В сборной камере расположена перегородка, разделяющая ее на радиально внутренний отсек и радиально внешний отсек, для существенного уменьшения ввода тепла протекающей во внутреннем отсеке среды в корпус по сравнению со сборной камерой без перегородки. Перегородка имеет, по меньшей мере, одно отверстие для удаления, которое посредством канала сообщено с расположенным в корпусе отверстием для удаления отведенной части среды из корпуса. Внешний отсек выполнен в виде закрытой камеры, которая служит в качестве изолирующей полости между внутренним отсеком и корпусом. Другим объектом настоящего изобретения является стационарная, аксиально обтекаемая газовая турбина с описанным выше компрессором. Изобретение позволяет повысить коэффициент полезного действия компрессора и газовой турбины. 2 н. и 7 з.п. ф-лы, 3 ил.

2488008
выдан:
опубликован: 20.07.2013
ТРИГЕНЕРАЦИОННАЯ УСТАНОВКА НА БАЗЕ МИКРОТУРБИННОГО ДВИГАТЕЛЯ

Изобретение относится к области теплоэнергетики и энергосбережения, предназначено для одновременной выработки электрической, тепловой энергий и низкотемпературного носителя. Тригенерационная установка на базе микротурбинного двигателя включает в себя компрессор, камеру сгорания топлива, газовую турбину, электрогенератор, теплообменник-регенератор с линиями прямого и обратного потоков. Газовая турбина находится на одном валу с компрессором и электрогенератором. Линия подачи воздуха в компрессор и теплообменник-регенератор с линиями прямого и обратного потоков являются частью двигателя. К микротурбинному двигателю присоединяется теплообменник-регенератор с линиями подающего и подпитывающего потоков, на выходе из которого установлена абсорбционная холодильная машина. Достигается повышение коэффициента полезного действия, энергосбережение, энергоэффективность за счет отдачи тепла в микротурбинном двигателе, теплообменнике-регенераторе для горячего водоснабжения и абсорбционной холодильной машине от сгоревших газов топлива для выработки электрической и тепловой энергий и низкотемпературного носителя для потребителей. 1 ил.

2487305
выдан:
опубликован: 10.07.2013
ПОДВОДНЫЙ ГАЗОПЕРЕКАЧИВАЮЩИЙ АГРЕГАТ ДЛЯ МНОГОНИТОЧНОГО ТРУБОПРОВОДА

Изобретение относится к транспортировке углеводородного сырья по проложенным по морскому дну трубопроводам большой протяженности. Газоперекачивающий агрегат имеет охранный кожух, разделенный уплотнениями на отсеки, в которых помещены по отдельности электродвигатель и компрессор, приводным образом соединенные одним валом, который опирается на магнитные подшипники. Агрегат дополнительно снабжен компрессорами в количестве не менее двух, имеющими единый с электродвигателем вал, преобразователем частоты, системой управления электродвигателем. Магнитные подшипники снабжены силовыми элементами и системой управления магнитными подшипниками, а охранный кожух разделен на отсеки не менее трех. В первом отсеке расположены система управления электродвигателем и система управления магнитными подшипниками, во втором отсеке - преобразователь частоты и силовые элементы магнитных подшипников, в третьем - электродвигатель. В последующих отсеках расположены компрессоры, причем отсеки компрессоров изолированы друг от друга с помощью уплотнений. Охранный кожух ориентирован горизонтально. На валу установлены два радиальных и один осевой магнитные подшипники. Силовые элементы выполнены на полностью управляемых полупроводниковых ключах IGBT, собранных по мостовой схеме. Система управления магнитными подшипниками выполнена по дифференциальной схеме регулирования положения вала агрегата по всем направлениям. Уплотнения выполнены в виде уплотнительной пары, одна из частей которой вращающаяся и закреплена на валу, а другая неподвижная и закреплена на охранном кожухе, при этом на рабочей поверхности вращающейся части нанесены динамические пазы. Техническим результатом является повышение надежности работы газоперекачивающего агрегата в подводном положении на несколько подводных магистральных газопроводов при эксплуатации одного электропривода. 5 з.п. ф-лы, 1 ил.

2485353
выдан:
опубликован: 20.06.2013
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ С ДВУМЯ КАМЕРАМИ СГОРАНИЯ

Газотурбинный двигатель содержит две камеры сгорания высокого и низкого давления и, по крайней мере, две последовательно размещенные по ходу газа газовые турбины, рекуперативный воздухоподогреватель, а также компрессор и воздушную турбину. Вторая из турбин на входе по газу сообщена с выходом камеры сгорания низкого давления. Рекуперативный воздухоподогреватель сообщен на входе по греющему газу с выходом последней газовой турбины по газу, на выходе по греющему газу - с атмосферой. Воздушная турбина установлена на одном валу с компрессором и сообщена на входе по воздуху с выходом компрессора по воздуху через тракт рекуперативного воздухоподогревателя по воздуху, на выходе по воздуху - с атмосферой. Камера сгорания низкого давления на входе по рабочему телу сообщена с выходом рекуперативного воздухоподогревателя по воздуху. Вторая газовая турбина на входе по газу сообщена также с выходом первой газовой турбины по газу. Изобретение направлено на повышение КПД газотурбинного двигателя, достигаемого при умеренных температурах газа перед второй газовой турбиной и за последней газовой турбиной. 1 табл., 4 ил.

2474708
выдан:
опубликован: 10.02.2013
ПАРОГАЗОВАЯ УСТАНОВКА С КАМЕРАМИ СГОРАНИЯ ДВУХ ДАВЛЕНИЙ

Парогазовая установка с камерами сгорания двух давлений содержит газотурбинный двигатель с двумя камерами сгорания высокого и низкого давления и, по крайней мере, с двумя последовательно размещенными по ходу газа газовыми турбинами, а также утилизационный парогенератор и компрессор низкого давления. Вторая из турбин на входе по газу сообщена с выходом камеры сгорания низкого давления по газу. Компрессор сообщен на выходе по воздуху с входом камеры сгорания низкого давления по рабочему телу. Парогазовая установка содержит рекуперативный воздухоподогреватель, сообщенный на входе по греющим газам с выходом последней газовой турбины газотурбинного двигателя по отработанным газам. Утилизационный парогенератор содержит пароперегревательный участок, размещенный по ходу газов параллельно рекуперативному воздухоподогревателю либо за ним. Остальные участки парогенератора размещены по ходу газов за пароперегревательным участком. Камера сгорания низкого давления на входе по рабочему телу сообщена с выходом компрессора низкого давления по воздуху через тракт рекуперативного воздухоподогревателя по воздуху. Вторая газовая турбина на входе по газу сообщена также с выходом первой газовой турбины по газу. Изобретение направлено на повышение КПД парогазовой установки. 4 ил.

2473817
выдан:
опубликован: 27.01.2013
ПРИВОДНОЕ УСТРОЙСТВО, ЕГО ПРИМЕНЕНИЕ ДЛЯ ОТКРЫТИЯ И ЗАКРЫТИЯ СТВОРОК В ГАЗОТУРБИННОМ ДВИГАТЕЛЕ И ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ

Приводное устройство содержит по меньшей мере один приводной механизм, изготовленный из сплава с эффектом памяти двухсторонней формы. Приводной механизм имеет первое устойчивое состояние при первой заданной температуре, в котором он производит операцию открытия или закрытия створки, и второе устойчивое состояние при второй заданной температуре, в котором он производит другую операцию открытия или закрытия данной створки, отличную от первой. Также он содержит средства регулирования температуры для доведения приводного механизма до первой или второй заданной температуры, регулировочный клапан и соединительную трубу, сопряженную с регулировочным клапаном. Приводной механизм имеет первую питательную линию, соединенную с первым источником жидкости, доводимой до первой заданной температуры, и вторую питательную линию, соединенную со вторым источником жидкости, доводимой до второй заданной температуры. Первая и вторая питательные линии соединены с регулировочным клапаном. Также объектом настоящего изобретения является применение приводного устройства, описанного выше, для открытия и закрытия по меньшей мере одной створки в газотурбинном двигателе. При этом двигатель содержит по меньшей мере один конструктивный элемент, через который проходит поток жидкости и который имеет вход, на уровне которого жидкость находится при заданной входной температуре. А также двигатель содержит выход, на уровне которого жидкость находится при заданной выходной температуре. Первый источник жидкости представлен источником входа или выхода, а другой источник представлен другим источником входа и выхода. Другим объектом изобретения является турбореактивный двигатель, содержащий первичный газовоздушный тракт истечения воздуха с вторичным газовоздушным трактом истечения воздуха и разгрузочную систему по меньшей мере с одной разгрузочной створкой, позволяющей отклонять воздух от первичного газовоздушного тракта к вторичному газовоздушному тракту, и по меньшей мере одно приводное устройство, описанное выше. Изобретение позволяет снизить массу и габаритные размеры приводного устройства. 3 н. и 10 з.п. ф-лы, 8 ил.

2472955
выдан:
опубликован: 20.01.2013
ИНТЕГРАЦИЯ ПО ТЕПЛУ В ПРОЦЕССЕ, ВКЛЮЧАЮЩЕМ ГАЗИФИКАЦИЮ УГЛЯ И РЕАКЦИЮ МЕТАНИРОВАНИЯ

Изобретение относится к процессу метанирования, в частности к рекуперации тепла в процессе, включающем реакцию метанирования и объединенном с процессом газификации угля. Объединенная система из блоков газификации, метанирования и зоны энергоустановки, содержащей паровую турбину, включает секцию метанирования 202, включающую первый реактор метанирования 214, имеющий вход, выполненный с возможностью приема синтез-газа, и выход; второй реактор метанирования 216, имеющий вход, соединенный с выходом первого реактора метанирования, и выход; третий реактор метанирования 218, имеющий вход, соединенный с выходом второго реактора метанирования, и выход; и пароперегреватель низкого давления 206, установленный между вторым 216 и третьим 218 реакторами, который нагревает пар низкого давления; секцию паровой турбины 204, включающую паровую турбину низкого давления 234, имеющую вход, соединенный с выходом пароперегревателя низкого давления 206. Секция метанирования 202 дополнительно включает испаритель 220, соединенный, !;с выходом третьего реактора метанирования 218, и первый экономайзер высокого давления 210, установленный между третьим реактором метанирования 218 и испарителем 220; второй экономайзер высокого давления 208, установленный между вторым 216 и третьим 218 реакторами метанирования; пароперегреватель высокого давления 236, расположенный между первым 214 и вторым 216 реакторами метанирования. Секция паровой турбины 204 дополнительно включает паровую турбину высокого давления 230. Объединенная система не требует получения дополнительного пара, который обычно используют для увлажнения сухого газа перед введением его в реактор конверсии, и таким образом в ней снижается количество нерекуперируемой энергии. 2 н. и 10 з.п. ф-лы, 2 ил.

2472843
выдан:
опубликован: 20.01.2013
ГАЗОПЕРЕКАЧИВАЮЩАЯ СТАНЦИЯ

Изобретение относится к области энергетики и может быть использовано для газоперекачивающих станций, включающих в себя газоперекачивающие агрегаты магистральных газопроводов. Газоперекачивающая станция включает ряд блоков, каждый из которых содержит работающий и резервный газоперекачивающие агрегаты. Газоперекачивающие агрегаты содержат газотурбинные установки, связанные каждая по валу со своим газовым компрессором, а по выхлопам горячего газа соединенные магистралью с котлом-утилизатором, включающим камеру дожигания и паровую турбину. В каждый блок введен третий газовый компрессор, при этом паровая турбина котла-утилизатора каждого блока соединена по валу с каждым третьим газовым компрессором. Изобретение направлено на повышение эффективности газоперекачивающих станций. 1 ил.

2467189
выдан:
опубликован: 20.11.2012
КОМБИНИРОВАННАЯ ГАЗОТУРБОДЕТАНДЕРНАЯ УСТАНОВКА ДЛЯ РАБОТЫ НА ПРИРОДНОМ ГАЗЕ

Комбинированная газотурбодетандерная установка для работы на природном газе содержит магистраль природного газа, турбодетандер, нагреватель, рекуператор, насос, потребитель мощности, например электрогенератор, газогенератор ГТД, включающий воздушный компрессор, камеру сгорания и турбину, нагреватель с каналами холодного и промежуточного теплоносителя и рекуператор с каналами горячего и промежуточного теплоносителя. Компрессор, турбина и потребитель мощности сопряжены между собой механически через вал. Магистраль природного газа и вход турбодетандера соединены через канал холодного теплоносителя нагревателя. Выход турбодетандера соединен с потребителем природного газа. Выход турбины через канал горячего теплоносителя рекуператора соединен с атмосферой. Каналы промежуточного теплоносителя рекуператора и нагревателя и насос соединены в общий замкнутый контур. Установка дополнительно содержит источник сжатого воздуха, накопитель сжатого воздуха, камеру сбора утечек уплотнений по валу, муфту сцепления, дроссель-регулятор, редуктор давления и клапаны. Турбодетандер соединен механически через муфту сцепления с газогенератором ГТД. Камера сбора утечек уплотнений по валу газодинамически соединена с входом в компрессор. Источник сжатого воздуха соединен с входом в турбодетандер через накопитель с клапанами на входе и на выходе. Выход турбодетандера снабжен клапаном и дополнительно через клапан соединен с входом компрессора. Магистраль природного газа и канал холодного теплоносителя нагревателя соединены через клапан. Магистраль природного газа дополнительно соединена с входом в турбодетандер через клапан. Вход в канал горячего теплоносителя рекуператора из турбины снабжен клапаном. Выход турбины дополнительно связан через дроссель-регулятор непосредственно с атмосферой. Достигается повышение эффективности установки, улучшение ее экологических показателей и обеспечение бесперебойности работы. 4 з.п. ф-лы, 2 ил.

2463462
выдан:
опубликован: 10.10.2012
КОМБИНИРОВАННЫЙ ГАЗОТУРБИННЫЙ ГАЗОПЕРЕКАЧИВАЮЩИЙ АГРЕГАТ

Изобретение относится к газотранспортному оборудованию и может быть использовано при создании газотурбинных газоперекачивающих агрегатов. Комбинированный газотурбинный газоперекачивающий агрегат содержит магистральный компрессор, газотурбинный двигатель, состоящий из компрессорного блока, камеры сгорания и турбинного блока, систему рекуперации тепла газотурбинного двигателя и газосвязанную с ней внешнюю турбину. Система рекуперации тепла выхлопных газов образована расширенным участком выхлопного тракта двигателя и пропущенным через его полость участком напорного трубопровода магистрального компрессора. Участок напорного трубопровода магистрального компрессора имеет развитую теплообменную поверхность. Внешняя турбина является приводом компрессорного блока газотурбинного двигателя. Использование транспортируемого газа в качестве теплоносителя в рекуператоре и рабочего тела во внешней турбине позволяет существенно повысить энергоэффективность газоперекачивающего агрегата, снизить тепловое воздействие на окружающую среду, снизить затраты на оборудование и обслуживание систем промежуточного теплоносителя. 1 ил.

2460891
выдан:
опубликован: 10.09.2012
СПОСОБ УПРАВЛЕНИЯ ГИДРАВЛИЧЕСКИМ РЕЖИМОМ КОМПРЕССОРНОГО ЦЕХА С ОПТИМАЛЬНЫМ РАСПРЕДЕЛЕНИЕМ НАГРУЗКИ МЕЖДУ ГАЗОПЕРЕКАЧИВАЮЩИМИ АГРЕГАТАМИ

Изобретение относится к области управления газоперекачивающими агрегатами (ГПА) при транспортировке газа. Заданные величины частот вращения роторов нагнетателей определяют по соотношению в области допустимых значений изменения нагрузки каждого ГПА с учетом ограничения максимально допустимой разности нагрузок между соседними ГПА. Заданное оператором произвольное соотношение нагрузок вносят в расчет, либо по включенному методу оптимизации вычисляют соотношение нагрузок, соответствующее минимальному потреблению топливного газа. Для расчета оптимального соотношения нагрузок применяют метод оптимизации многомерных моделей при ограничениях. Поиск оптимального соотношения нагрузок нагнетателей производят на всем диапазоне допустимых значений частот нагнетателей, учитывая ограничения максимально возможной разности между нагрузками нагнетателей. В расчете изменение потребления агрегатом топливного газа связано с изменением в турбине энергий термического взаимодействия, механического взаимодействия и газодинамического взаимодействия рабочих сред согласно принципу сохранения энергии. Изменение указанных четырех видов энергии при помощи математических моделей выражаются через изменение измеренных в системе автоматического управления ГПА параметров. По измеренным данным и модельным зависимостям формируют основные модели энергетического взаимодействия в ГПА на текущих и ряде возможных режимах различных частот вращения ГПА. По модели энергетического взаимодействия рассчитывают соответствующие этим режимам значения объемной и коммерческой производительности ГПА, а также потребление топливного газа. Полученные совокупности значений формируют в статические зависимости. Последние и ограничения обрабатывают методом оптимизационного расчета, при работе которого рассчитывают задания частот вращения нагнетателей методом нелинейного программирования, задания частот подают в систему управления ГПА в качестве управляющего воздействия. Предельно допустимые границы работы каждого отдельного ГПА рассчитывают по функциональным зависимостям непрерывно, а формирование модельных зависимостей энергетического баланса для оптимизационного расчета выполняют однократно для оптимизационного расчета. Изобретение направлено на расширение возможности распределения нагрузки в цехе и применение способа оптимизации во всем диапазоне работы ГПА. 9 ил.

2454569
выдан:
опубликован: 27.06.2012
СПОСОБ СОЗДАНИЯ РАЗРЕЖЕНИЯ НА ВЫХОДЕ ИЗ ТУРБОКОМПРЕССОРА

Способ создания разрежения на выходе турбокомпрессора, при котором в выпускной канал между выходом турбокомпрессора и глушителем установлено устройство для впрыска воды под высоким давлением. Впрыск воды в выпускной канал осуществляется в момент ее нахождения при низкой температуре. При впрыске холодной воды под высоким давлением она оказывает значительный охлаждающий эффект, что ведет к быстрому падению давления в выпускном канале. При определенном давлении впрыска достигается такая скорость охлаждения, при которой падение давления на выходе турбокомпрессора не успевает компенсироваться за счет обратного притока атмосферного воздуха через глушитель. Это приводит к росту перепада давления, действующего на лопатки турбины турбокомпрессора, что ведет к росту давления наддува турбокомпрессора. 1 ил.

2450134
выдан:
опубликован: 10.05.2012
ТУРБОКОМПРЕССОР, РАБОТАЮЩИЙ НА ОТРАБОТАВШИХ ГАЗАХ, ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Изобретение относится к турбокомпрессору, работающему на отработавших газах, для двигателя внутреннего сгорания, содержащему корпус (14) и ротор (18), при этом корпус (14) содержит выполненный с возможностью протекания участок (15) отвода отработавших газов, а ротор (18) содержит турбинное колесо (20) и жестко соединенный на кручение с турбинным колесом (20) вал (21) с осью (22) вращения, при этом турбинное колесо (20) установлено в опорах с возможностью вращения в участке (15) отвода отработавших газов и выполнено с возможностью подачи на него отработавших газов, а в участке (15) отвода отработавших газов расположено направляющее устройство (29) для изменения подачи отработавших газов на турбинное колесо (20), причем направляющее устройство (29) содержит выполненное с возможностью протекания направляющее решетчатое кольцо (30) и осевую задвижку (31), а направляющее решетчатое кольцо (30) содержит стойку (37) для фиксации, а также выполненные с возможностью протекания направляющие лопатки (36), а осевая задвижка (31) выполнена с возможностью захватывания направляющих лопаток (36). Согласно изобретению направляющее решетчатое кольцо (30) содержит направляющие лопатки (36), которые выполнены с возможностью захватывания осевой задвижкой (31), начиная от стойки (37). Изобретение обеспечивает повышение надежности турбокомпрессора, работающего на отработанных газах. 7 з.п. ф-лы, 3 ил.

2450127
выдан:
опубликован: 10.05.2012
СПОСОБ ЭКСПЛУАТАЦИИ ОТОПИТЕЛЬНОЙ СИСТЕМЫ ЗДАНИЯ И ГАЗОТУРБИННАЯ ОТОПИТЕЛЬНАЯ СИСТЕМА ЗДАНИЯ

Отопительная система здания и способ ее эксплуатации. Отопительная система здания имеет максимальную отопительную нагрузку. Часть используемой энергии преобразуется в электрическую энергию с помощью многоступенчатой газотурбинной установки. В зависимости от отопительной нагрузки отопительной системы здания осуществляют более высокое сжатие выходящего из компрессора (3) первой ступени (1) газотурбинной установки газового потока посредством компрессора (6) второй ступени (2) газотурбинной установки, которая имеет одну турбину (7) и один компрессор (6). Выходящий из первой ступени газотурбинной установки газовый поток охлаждают и затем подают в компрессор (6) второй ступени газотурбинной установки, а оттуда - в камеру сгорания (14). Тепло в контур отопления передают посредством передающего водяного контура (11). После первого компрессора предусмотрен первый газо-водяной теплообменник (10). От передающего водяного контура (11) тепло через водо-водяной теплообменник (30) передают в контур (12) отопления. Вода передающего водяного контура (11) проходит через второй газо-водяной теплообменник (19), в котором она нагревается выходящим из турбины (4) первой ступени газовым потоком, и далее проходит через теплообменник (21) отходящих газов. 2 н. и 16 з.п. ф-лы, 2 ил.

2441999
выдан:
опубликован: 10.02.2012
ЭНЕРГОАККУМУЛИРУЮЩАЯ УСТАНОВКА

Изобретение относится преимущественно к автономным системам и установкам энергообеспечения, использующим как различные виды топлива, так и возобновляемые источники энергии, например энергию солнца, и предназначена для обеспечения отопительным теплом, горячей водой, холодом и электроэнергией различных объектов, имеющих неравномерную энергетическую нагрузку. Энергоаккумулирующая установка содержит турбину, приемник рабочего тела, подключенный к выходу турбины, компрессор и охлаждающий теплообменник, соединенный с аккумулятором рабочего тела, который через нагревающий теплообменник подключен ко входу в турбину. Внутренняя полость приемника рабочего тела сообщается с первым гидравлическим компенсатором давления. Внутренняя полость аккумулятора рабочего тела сообщается со вторым гидравлическим компенсатором давления, подключенным к системе накопления жидкости с возможностью использования гидростатического напора жидкости для компенсации давления рабочего тела. Изобретение направлено на повышение надежности установки и снижение стоимости производства энергии. 6 з.п. ф-лы, 1 ил.

2435050
выдан:
опубликован: 27.11.2011
ЭЛЕКТРОМОБИЛЬ

Изобретение относится к области электротранспорта. Электромобиль содержит несущий кузов, ходовую часть с элементами подвески, управляемыми и ведущими колесами, отсек батарей, силовую установку, шнековый насос, механизмы управления. Силовая установка выполнена в форме атмосферного ионного двигателя, содержащего лопастной двигатель. Выпускная полость лопастного двигателя соединена с полостями нескольких одинаковых по конструкции электрических ионных насосов. Батареи выполнены в виде высоковольтных ядерно-изотопных батарей. Батареи содержат герметичный корпус, эмиттер. Вывод эмиттера изолирован от корпуса и выведен наружу. Рабочим телом двигателя является атмосферный воздух. Шнековый насос гидропередачи соединен с валом атмосферного ионного двигателя. Лопастной двигатель соединен с карданным валом и задним мостом электромобиля. Насос и двигатель посредством трубопроводов связаны с масляным баком и золотниковым переключателем. Технический результат заключается в упрощении обслуживания транспортного средства и увеличении его срока службы. 10 ил.

2432270
выдан:
опубликован: 27.10.2011
АВИАЦИОННАЯ СИСТЕМА ГЕНЕРАТОРА ЭЛЕКТРОЭНЕРГИИ, ИСПОЛЬЗУЮЩАЯ ТОПЛИВНЫЕ БАТАРЕИ

Изобретение относится к силовым установкам летательных аппаратов вспомогательного назначения. Топливная батарея (10) содержит отверстие для сжатого воздуха из компрессора (20) и отверстие для топлива, что позволяет производить электричество постоянного тока. Турбина (30) получает поток газа под давлением из топливной батареи, механически присоединена к первому компрессору и приводит его в действие. Второй компрессор (46) используется в полете для обеспечения салона (40) воздухом под давлением и механически соединен с осью турбины. Электрическая машина (50) присоединена к оси турбины, которая приводит в действие компрессор (46), и может работать как генератор или как электрический двигатель. Изобретение направлено на расширение арсенала технических средств. 7 з.п. ф-лы, 2 ил.

2431585
выдан:
опубликован: 20.10.2011
СПОСОБ ОХЛАЖДЕНИЯ РОТОРА ГАЗОТУРБИННОЙ УСТАНОВКИ, ОСУЩЕСТВЛЯЕМЫЙ ПУТЕМ НЕПРЕРЫВНОГО ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ ЗА СЧЕТ ЭНДОТЕРМИЧЕСКОЙ РЕАКЦИИ

Способ охлаждения ротора газотурбинной установки осуществляется путем непрерывного преобразования энергии за счет эндотермической реакции. Воздух сжимают в компрессоре, затем подают его в камеру сгорания для сжигания топлива. Полученный при сжигании горячий газ подают для расширения на активную газовую силовую турбину, которую используют для привода компрессора. Осуществляют дожигание преобразованного топлива с повышенной абсолютной теплотворной способностью, которое получают за счет эндотермической реакции исходного топлива в реакторе парового реформинга. Проводят параллельный тепловой цикл, в котором нагретую в парогенераторе смесь паров воды с углеводородным топливом подают через полый вал газотурбинной установки в реакционный объем. Реакционный объем содержит пористый металлоуглеродный контейнер, расположенный во внутренней полости реактивной газовой турбины, которая находится в тепловом контакте с силовой или является ее частью. Реактор приводят во вращательное движение, за счет чего частично сжимают смесь в ходе эндотермической реакции. Смесь нагревают частично за счет охлаждения силовой турбины и за счет тепла отработанного газа, а затем выпускают через реактивные сопла, создавая дополнительный вращающий момент. Достигается повышение КПД и безопасности эксплуатации.

2430251
выдан:
опубликован: 27.09.2011
Наверх