Конденсаторы постоянной емкости; способы их изготовления – H01G 4/00

МПКРаздел HH01H01GH01G 4/00
Раздел H ЭЛЕКТРИЧЕСТВО
H01 Основные элементы электрического оборудования
H01G Конденсаторы; конденсаторы, выпрямители тока, детекторы, переключатели, светочувствительные или термочувствительные устройства электролитического типа
H01G 4/00 Конденсаторы постоянной емкости; способы их изготовления

H01G 4/002 .конструктивные элементы
H01G 4/005 ..электроды
H01G 4/008 ...выбор материалов
H01G 4/01 ...формы самоподдерживающихся электродов
H01G 4/012 ...формы несамоподдерживающихся электродов
H01G 4/015 ...специальные средства самовосстановления электродов
H01G 4/018 ..диэлектрики
H01G 4/02 ...газообразные или паровые диэлектрики
H01G 4/04 ...жидкие диэлектрики
H01G 4/06 ...твердые диэлектрики
H01G 4/08 ....неорганические диэлектрики
H01G 4/10 .....диэлектрики из оксида металла
H01G 4/12 .....керамические диэлектрики
H01G 4/14 ....органические диэлектрики
H01G 4/16 .....диэлектрики из волокнистого материала, например из бумаги
H01G 4/18 .....диэлектрики из синтетического материала, например производных целлюлозы
 4/16 имеет преимущество
H01G 4/20 ...с использованием комбинации диэлектриков более, чем одной из групп  4/02
 4/12 имеет преимущество
H01G 4/22 ....пропитанных
H01G 4/224 ..корпуса; оболочки; герметизация, корпусирование
H01G 4/228 ..выводы
H01G 4/232 ...электрические соединения двух или более слоев секционных или рулонных конденсаторов
H01G 4/236 ...соединения, проходящие через корпус, т.е. проходные втулки
H01G 4/242 ...емкостный элемент, окружающий вывод
H01G 4/245 ....печатные контакты между слоями электродов рулонного типа
H01G 4/248 ...выводы, охватывающие или окружающие емкостный элемент, например колпачки
 4/252 имеет преимущество
H01G 4/252 ...выводы с емкостным элементом в виде покрытия
 4/232 имеет преимущество
H01G 4/255 ..средства для коррекции величины электрической емкости
H01G 4/258 ..средства температурной компенсации
H01G 4/26 .складчатые конденсаторы
H01G 4/28 .трубчатые конденсаторы
H01G 4/30 .конденсаторы столбикового (многоярусного) типа
 4/33 имеет преимущество
H01G 4/32 .намотанные конденсаторы
H01G 4/33 .тонкопленочные или толстопленочные конденсаторы
тонкопленочные или толстопленочные приборы  H 01L 27/00
H01G 4/35 .проходные конденсаторы или конденсаторы для подавления шумов
H01G 4/38 .составные конденсаторы, т.е. конструктивно соединенные конденсаторы постоянной емкости
H01G 4/40 .конструктивные сочетания конденсаторов постоянной емкости с другими электрическими элементами, не отнесенными к данному подклассу, в которых основой конструкции является конденсатор, например RC-цепи
тонкопленочные или толстопленочные схемы  H 01L 27/00, RC-фильтры  H 03H

Патенты в данной категории

СПОСОБ ПРОПИТКИ СЛЮДОБУМАЖНЫХ КОНДЕНСАТОРОВ

Изобретение относится к области электротехники и может быть использовано для производства слюдобумажных конденсаторов и других электротехнических изделий. Техническим результатом является повышение надежности слюдобумажных конденсаторов. Способ включает прессование, размещение пропиточного состава в первой зоне вакуумной установки, размещение контейнеров со слюдобумажными конденсаторами во второй зоне вакуумной установки, проведение теплоизоляции первой и второй зон вакуумной установки друг от друга, сушку в вакууме контейнеров со слюдобумажными конденсаторами, сушку пропиточного состава, заполнение контейнеров со слюдобумажными конденсаторами пропиточным составом путем его заливки из первой во вторую зону вакуумной установки, пропитку при атмосферном давлении, термообработку по ступенчатому режиму, при этом первую зону вакуумной установки располагают над второй зоной вакуумной установки, после сушки в вакууме контейнеров со слюдобумажными конденсаторами температуру во второй зоне вакуумной установки понижают до температуры сушки пропиточного состава 95±5°C, одновременно в вакууме в первой зоне вакуумной установки проводят сушку пропиточного состава при температуре 95±5°C. 3 з.п. ф-лы, 2 ил.

2528014
выдан:
опубликован: 10.09.2014
ПЛЕНОЧНЫЙ КОНДЕНСАТОР

Предложенное изобретение относится к области электротехники, а именно к композитным пленочным электролитическим конденсаторам. Пленочный конденсатор содержит токосъемник - алюминиевую фольгу, поверхность которой через барьерный слой развита посредством электродного материала из губчатого вентильного металла, пропитанного электролитом. Новым является то, что электродный материал выполнен многослойным, каждый композитный слой которого представляет собой пленочную основу с рифлениями 50-100 нм из губчатого титана толщиной 50-100 мкм, несущую на поверхности локальные шипы из нанокластеров вентильного металла для электроконтакта в примыкании между собой, при этом, начиная со второго, слой губчатого титана выполнен со сквозными порами размером 0,3-5 мкм суммарным объемом не менее 10-15% объема слоя, при том, что конформный слой пористого титана с барьерным слоем на поверхности токосъемника связан гетеропереходом из композитных наночастиц, а барьерный слой на поверхности алюминиевой фольги выполнен из нитрида титана или алмазоподобного нанослоя из аморфного углерода -С:Н, которые связаны между собой посредством адгезионной прослойки, образованной противным распределением материалов примыкающих слоев, взаимно дополняющих друг друга по толщине. Повышение удельной емкости пленочного конденсатора является техническим результатом изобретения. 2 з.п. ф-лы, 3 ил.

2525825
выдан:
опубликован: 20.08.2014
ЕМКОСТНЫЙ ПРИБОР И РЕЗОНАНСНАЯ СХЕМА

Заявленное изобретение относится к области электротехники и направлено на предотвращение изменения емкости при смещении электродов, расположенных один напротив другого через слой диэлектрика. Емкостный прибор согласно изобретению содержит слой (10) диэлектрика, первый электрод (11), выполненный на заданной поверхности (10а) слоя (10) диэлектрика, и второй электрод (12), выполненный на противоположной поверхности (10b) слоя (10) диэлектрика. Первый и второй электроды (11, 12) выполнены такой формы, чтобы даже в случае смещения первого электрода (11) в заданном направлении относительно второго электрода (12) площадь перекрывающейся области противоположных электродов между первым электродом (11) и вторым электродом (12) оставалась неизменной. Повышение стабильности работы емкостных приборов с переменной емкостью является техническим результатом заявленного изобретения. 2 н. и 12 з.п. ф-лы, 61 ил.

2523065
выдан:
опубликован: 20.07.2014
СПОСОБ ИЗГОТОВЛЕНИЯ СЕГНЕТОЭЛЕКТРИЧЕСКИХ КОНДЕНСАТОРОВ

Изобретение относится к технологии изготовления конденсаторов с диэлектриком из керамики на основе титаната бария. Способ изготовления сегнетоэлектрических конденсаторов включает формование керамической подложки, преимущественно на основе титаната бария, нанесение легирующего покрытия, вакуумное напыление медных электродов и вакуумный отжиг композитного материала, при этом легирующее покрытие наносят в жидкой фазе путем конденсации из парового потока испаренных в вакууме металлов, выбранных из ряда: титан, ванадий, хром, марганец, ниобий, при температуре подложки 150-350°С, после чего подложку с легирующим покрытием подвергают вакуумному отжигу, а последующее нанесение медных электродов проводят непосредственно на нагретую до температуры не выше 600°С композитную подложку. Предложенное техническое решение обеспечивает повышение удельной емкости сегнетокерамического конденсатора, а также устойчивость к пробивному напряжению без диэлектрических потерь.1 табл., 2 пр.

2523000
выдан:
опубликован: 20.07.2014
СПОСОБ СПЕКАНИЯ ИЗДЕЛИЙ ДИЭЛЕКТРИЧЕСКОЙ КЕРАМИКИ

Изобретение относится к области технологии материалов. Техническим результатом является обеспечение высокой скорости спекания и равномерной усадки спекаемой диэлектрической керамики. Способ спекания содержит операции компактирования порошка и облучения более одной стороны компакта электронными пучками, формирование электронных пучков с энергией 10-15 кэВ производят отдельными источниками, а облучение компакта осуществляют при давлении газа 5-20 Па. Температуру компакта при облучении задают плотностью мощности пучков. Формирование пучков отдельными источниками в сочетании с давлением газа 5-20 Па. 1 ил.

2516532
выдан:
опубликован: 20.05.2014
СПОСОБ ПОЛУЧЕНИЯ КАТОДНОЙ ОБКЛАДКИ ОКСИДНО-ПОЛУПРОВОДНИКОВОГО КОНДЕНСАТОРА

Изобретение относится к области электротехники, а именно к технологии нанесения покрытия из диоксида марганца на оксидированные объемно-пористые аноды вентильного металла, например тантала, ниобия. Способ получения катодной обкладки оксидно-полупроводникового конденсатора заключается в нанесении многослойного катодного покрытия из диоксида марганца на оксидированный объемно-пористый анод из вентильного металла и включает в себя многократные циклы пропитки-пиролиза анодов с использованием пропитывающего водного раствора с возрастающей от цикла к циклу концентрацией нитрата марганца с добавкой азотной кислоты в качестве активного негалогенированного окисляющего реагента в количестве, обеспечивающем в пропитывающем растворе величину рН 1, не более, и водяного пара во время пиролиза, а также в подформовке анодов после получения каждого слоя диоксида марганца и финишной обработке сформированного многослойного покрытия из диоксида марганца парами азотной кислоты при повышенной температуре 55-70°С в течение не менее 1 минуты. Техническим результатом заявленного изобретения являются стабильные улучшенные электрические характеристики конденсатора, в том числе низкое эквивалентное последовательное сопротивление, а также увеличение выхода годных изделий при сокращении расхода материалов и энергоресурсов. 2 табл., 2 ил., 6 пр.

2516525
выдан:
опубликован: 20.05.2014
СОСТАВНАЯ ЕМКОСТЬ И ЕЕ ПРИМЕНЕНИЕ

Составной емкостный компонент содержит множество физически различных конденсаторных модулей, которые электрически соединены друг с другом. Различные модули обеспечивают повышенную электрическую и/или геометрическую гибкость при проектировании емкостного компонента. Каждый из конденсаторных модулей содержит множество базовых конденсаторов, установленных на специальной модульной плате печатного монтажа (PCB). Все базовые конденсаторы конденсаторных модулей являются идентичными, что упрощает как производство, так и обслуживание емкостного компонента. Формирование составной емкости на базовых конденсаторах одного типа значительно упрощает как их изготовление, так и обслуживание. Пространственная гибкость, достигаемая благодаря применению множества электрически взаимно соединенных конденсаторных модулей, является предпочтительным в таких силовых устройствах, где объем, доступный для емкостного компонента внутри устройства, может быть ограничен, по меньшей мере, в одном направлении. Геометрически гибкая компоновка, обеспечиваемая отдельными конденсаторными модулями, позволяет их располагать под произвольным углом друг к другу и таким образом занимать свободное пространство в силовых устройствах, увеличивая их составную емкость. 2 н. и 6 з.п. ф-лы, 8 ил.

2508574
выдан:
опубликован: 27.02.2014
СПОСОБ ТРАНСФОРМАЦИИ ЭЛЕКТРОЭНЕРГИИ, УСТРОЙСТВО ДЛЯ ЕГО ФУНКЦИОНИРОВАНИЯ И СПОСОБ ИЗГОТОВЛЕНИЯ УСТРОЙСТВА

Изобретение относится к способам и устройствам преобразования электроэнергии (трансформаторам), а также к переключателям с прямолинейным движением органа управления. Технический результат заключается в упрощении устройства путем исключения магнитопровода. Преобразование энергии происходит без стального сердечника с помощью электрического и магнитного полей. В связи с этим устройство может найти самое широкое применение для преобразования энергии сверх высоких частот, в частности преобразования входной частоты в выходную. 2 н.п. ф-лы, 3 ил.

2504037
выдан:
опубликован: 10.01.2014
СУПЕРКОНДЕНСАТОР С МНОЖЕСТВОМ ДОРОЖЕК

Объектом изобретения является суперконденсатор, содержащий по меньшей мере два находящихся рядом друг с другом комплекса (1, 2), разделенные расстоянием d, и по меньшей мере один общий комплекс (3) напротив двух находящихся рядом друг с другом комплексов (1, 2), отделенный от них по меньшей мере одним разделителем (4), при этом разделитель (4) и комплексы (1, 2, 3) намотаны спиралевидно вместе, образуя намотанный элемент. Снижение сопротивления системы и увеличение допустимой энергии на единицу объема, а также повышение срока службы заявленного комплекса является техническим результатом заявленного изобретения. 2 н. и 25 з.п. ф-лы, 15 ил., 1 табл.

2493629
выдан:
опубликован: 20.09.2013
СУПЕРКОНДЕНСАТОР С МНОЖЕСТВОМ ОБМОТОК

Объектом настоящего изобретения является суперконденсатор с двойным электрохимическим слоем, содержащий по меньшей мере два комплекса (2, 3) и по меньшей мере один разделитель (4) между ними, при этом комплексы (2, 3) и разделитель (4) намотаны вместе спиралевидно, образуя намотанный элемент (10). Согласно изобретению суперконденсатор дополнительно содержит по меньшей мере один другой комплекс (1) и по меньшей мере один другой разделитель (4), при этом другой комплекс (1) и другой разделитель (4) намотаны вместе спиралевидно вокруг намотанного элемента (10), образуя по меньшей мере один последующий намотанный элемент (20), причем эти последовательно намотанные элементы (10, 20) разделены электроизолирующим пространством. Снижение сопротивления между двумя последовательно соединенными звеньями суперконденсатора, а также повышение объемной и массовой плотности энергии, является техническим результатом предложенного изобретения. 2 н. и 31 з.п. ф-лы, 28 ил.

2492542
выдан:
опубликован: 10.09.2013
ГИБРИДНОЕ УСТРОЙСТВО АККУМУЛИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ С ЭЛЕКТРОХИМИЧЕСКИМ СУПЕРКОНДЕНСАТОРОМ/СВИНЦОВО-КИСЛОТНОЙ БАТАРЕЕЙ

Изобретение относится к гибридным устройствам аккумулирования электрической энергии со свинцово-кислотной батареей/электрохимическим конденсатором. Свинцово-кислотная батарея и электрохимический конденсатор находятся в одном и том же корпусе и электрически соединены. Гибридное устройство включает в себя по меньшей мере один неполяризуемый положительный электрод, по меньшей мере один неполяризуемый отрицательный электрод и по меньшей мере один поляризуемый отрицательный электрод с двойным электрическим слоем. Между электродами находятся сепараторы, и эти сепараторы и электроды пропитаны водным сернокислотным электролитом. Изобретение позволяет повысить мощностные характеристики. 3 н. и 17 з.п. ф-лы, 13 ил.

2484565
выдан:
опубликован: 10.06.2013
СПОСОБ НАКОПЛЕНИЯ ЭЛЕКТРОЭНЕРГИИ (2 ВАРИАНТА) И НАКОПИТЕЛЬ ЭЛЕКТРОЭНЕРГИИ КОНДЕНСАТОРНОГО ТИПА (НЭКТ) ДЛЯ РЕАЛИЗАЦИИ СПОСОБА (2 ВАРИАНТА)

Изобретение относится к электротехнике, в частности к технологии и оборудованию для передачи электроэнергии по одному проводящему каналу. Технический результат - снижение затрат на передачу энергии и беспроводная передача энергии на транспортные средства. Способ включает накопление заряда свободных электронов в вакууме, создающих объемный отрицательный заряд в стационарном вакуумном конденсаторе (ВК). Одновременно отключают анод от контакта заземления, катод ВК подключают к свободному выводу высоковольтной обмотки повышающего трансформатора. Второй вывод обмотки подключают к проводящему каналу или к кабелю. Высоковольтную обмотку понижающего трансформатора одним выводом подключают к незаряженному ВК, а вторым выводом - к тому же проводящему каналу или к кабелю. Возбуждаемый переменный ток в низковольтной обмотке понижающего трансформатора подают потребителю. 4 н. и 8 з.п. ф-лы, 4 ил.

2466495
выдан:
опубликован: 10.11.2012
ТОНКОПЛЕНОЧНЫЙ КОНДЕНСАТОР ДЛЯ ПОВЕРХНОСТНОГО МОНТАЖА В НЕСИММЕТРИЧНЫЕ ПОЛОСКОВЫЕ ЛИНИИ

Изобретение относится к пленочным конденсаторам постоянной емкости. Техническим результатом изобретения является уменьшение разброса параметров отдельных конденсаторов при их изготовлении. Согласно изобретению тонкопленочный разделительный конденсатор для поверхностного монтажа в полосковые линии передачи содержит последовательно соединенные подложку, изготовленную из полуизолирующего полупроводника электронного типа проводимости, нижняя и средняя части которой имеют одинаковое прямоугольное сечение, проводящий слой, изготовленный из эпитаксиального высоколегированного полупроводника электронного типа проводимости, изолирующий слой и две металлические контактные площадки прямоугольной формы, разделенные между собой зазором и выполнен в виде двухступенчатого пьедестала, нижняя прямоугольная ступень которого содержит нижнюю и среднюю части подложки, а вторая ступень, выполненная в виде четырехугольной усеченной пирамиды, содержит верхнюю часть подложки, проводящий слой, изолирующий слой, нанесенный на всю внешнюю поверхность пирамиды, и две металлические контактные площадки, верхняя, плоская, часть первой ступени пьедестала также покрыта изолирующим слоем, являющимся продолжением изолирующего слоя пирамиды, нанесенным одновременно с нанесением изолирующего слоя на пирамиду, и со стороны нижней поверхности подложки дополнительно нанесен защитно-упрочняющий слой металла. 4 з.п. ф-лы, 2 ил.

2460164
выдан:
опубликован: 27.08.2012
СПОСОБ ИЗГОТОВЛЕНИЯ ВАКУУМНЫХ КОНДЕНСАТОРОВ

Изобретение относится к области производства электрических вакуумных конденсаторов (ВК). Техническим результатом является повышение электрической прочности и уменьшение токов утечки вакуумных конденсаторов. Согласно изобретению способ изготовления ВК включает сборку и пайку смежных пакетов цилиндрических коаксиальных емкостных электродов, высоковольтную тренировку пробоями в вакуумной камере с помощью фальшпакета, устанавливаемого соосно с основным и повторяющего геометрию и размеры смежного пакета, или плоского фальшпакета в виде электрода, располагаемого параллельно плоскости торцов емкостных электродов на расстоянии, равном 1-3 величины радиального междуэлектродного промежутка. Электроды фальшпакета выполнены из материала, более прочного, чем материал емкостного электрода, способного адсорбировать продукты распыления емкостных электродов и первичные микрочастицы. Эта предварительная до сборки высоковольтная тренировка пробоями производится напряжением, равным 1,5-2 номинального напряжения конденсатора, по методике, принятой для тренировки конденсаторов. После проведения предварительной обработки пробоями пакетов электродов производят их сборку в емкостной блок с помощью цилиндрического изоляционного корпуса, высокотемпературную вакуумную обработку на откачном посту, студку конденсатора, высоковольтную тренировку электрическими пробоями и отпай с откачного поста. 2 ил.

2457566
выдан:
опубликован: 27.07.2012
СПОСОБ ПОЛУЧЕНИЯ СОСТАВА ДЛЯ ПРОПИТКИ МНОГОКРАТНОГО ПРИМЕНЕНИЯ И СПОСОБ ИЗГОТОВЛЕНИЯ СЛЮДОБУМАЖНЫХ КОНДЕНСАТОРОВ

Изобретение относится к области электротехники и может быть использовано для производства слюдобумажных конденсаторов. Способ получения состава для пропитки многократного применения для изготовления слюдобумажных конденсаторов заключается в том, что в качестве основы состава для пропитки берут дицианат дифенилолпропана, нагревают его, вводят катализатор, проводят стадию полимеризации, при этом проводят обратимую стадию полимеризации за счет того, что дицианат дифенилолпропана нагревают до температуры 95±5°С, в качестве катализатора используют дифенилолпропан в количестве 1,5-2%, а перед повторным использованием отработанного состава для пропитки в него вводят не менее 50% свежеприготовленного состава для пропитки. Заявлен также способ изготовления слюдобумажных конденсаторов. Технический результат - получают состав для пропитки многократного применения, изготовливают слюдобумажные конденсаторы с использованием такого состава, также происходит упрощение применения катализатора, достигается экономичность расхода дорогостоящего дицианата, используемого при пропитке конденсаторов. Техническим результатом является также обеспечение требуемого значения вязкости состава для пропитки путем регулирования процесса его полимеризации при длительных температурных воздействиях и обеспечение требуемых электрических параметров слюдобумажных конденсаторов, пропитанных составом многократного применения. 2 н.п. ф-лы, 3 табл., 5 пр.

2455719
выдан:
опубликован: 10.07.2012
СПОСОБ ИЗГОТОВЛЕНИЯ НАКОПИТЕЛЕЙ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к способу изготовления накопителя (1) электрической энергии, имеющего цилиндрический рулонный элемент (10), содержащий на каждом своем конце коллекторный участок сбора тока, а также к устройству для осуществления способа и накопителю, изготовленному этим способом. Согласно изобретению способ включает в себя этап радиального загибания по меньшей мере одного коллекторного участка сбора тока на его конце от центра к периферии конца коллекторного участка. Техническим результатом является повышение электрического и механического качества сварного соединения. 3 н. и 37 з.п. ф-лы, 5 ил.

2453011
выдан:
опубликован: 10.06.2012
СПОСОБ ИЗГОТОВЛЕНИЯ КОНДЕНСАТОРОВ БОЛЬШОЙ ЭНЕРГОЕМКОСТИ

Изобретение относится к электротехнике и может быть использовано при производстве конденсаторов. Техническим результатом изобретения является увеличение емкости, снижение стоимости и массогабаритных показателей. Способ согласно изобретению включает размещение в межэлектродном пространстве хорошо перемешанными мелкими частицами проводящего вещества и мелкими частицами диэлектрика, причем объемную долю порошка диэлектрика берут больше, чем объемная доля порока проводящего материала. Перемешивание порошков ведут методом кавитационной обработки. 1 з.п. ф-лы, 1 ил., 2 табл.

2450381
выдан:
опубликован: 10.05.2012
СПОСОБ ИЗГОТОВЛЕНИЯ СЛОИСТОЙ НАНОСТРУКТУРЫ ДЛЯ ДВУХОБКЛАДОЧНЫХ КОНДЕНСАТОРОВ

Изобретение относится к микроэлектронике, а более конкретно к способам изготовления многослойных нанокомпозитов для конденсаторов, в частности наноструктур металл-диэлектрик-металл (МДМ) с нанометровой толщиной слоев. В способе, включающем следующие этапы: формирование на поверхности кремниевой подложки регулярно расположенных затравочных выступов, выращивание одномерных наноэлементов, а также нанесение методом атомно-слоевого осаждения (ALD) или plasma enchanched ALD (PEALD) методом на поверхности выращенных одномерных наноэлементов и на участки поверхности подложки, не занятые упомянутыми выше наноэлементами, слоев, конформных этим поверхностям и соответствующих диэлектрической части формируемой наноструктуры и верхней обкладке для конденсатора, согласно изобретению, центры одномерных наноэлементов формируют на поверхности кремниевой подложки в виде расположенных регулярно затравочных выступов, на которых выращивают методом скользящего углового осаждения (GLAD) одномерные наноэлементы из высоколегированного кремния столбчатой формы, при этом затравочные выступы выполняют с максимальными поперечными размерами от 25 до 80 нм. Техническим результатом является повышение удельной электро- и энергоемкости, однородности распределения электрофизических параметров. 3 з.п. ф-лы, 5 ил.

2444078
выдан:
опубликован: 27.02.2012
МИКРОКОНДЕНСАТОР

Изобретение относится к радиотехнике, к радиотехническим элементам, применяемым в электрических цепях с частотной избирательностью, и может быть использовано в трактах промежуточной частоты радиоприемных устройств. Техническим результатом изобретения является возможность регулирования емкости и значительно сократить паразитные емкости и индуктивности. Согласно изобретению микроконденсатор, содержит диэлектрическую подложку и множество токоведущих элементов металлизации, сформированных на верхней и нижней поверхностях и в отверстиях диэлектрической подложки, которые образуют обкладки конденсатора плоскокоаксиального типа. Выходы металлизированных отверстий на одной из поверхностей соединены с контактными площадками и перемычками, предназначенными для изменения величины емкости от максимального до минимального значения путем их разъединения. 1 ил.

2438204
выдан:
опубликован: 27.12.2011
МНОГОСЛОЙНЫЙ НАНОКОМПОЗИТ ДЛЯ КОНДЕНСАТОРОВ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Изобретение относится к нанослойным структурам типа металл-диэлектрик-металл для микроэлектроники. Техническим результатом изобретения является создание многослойного нанокомпозита для конденсаторов с большой удельной энергоемкостью. Согласно изобретению многослойный нанокомпозит для конденсаторов содержит подложку из графитовой фольги плотностью от 0,27 до 1,2 г/см3 , на лицевой поверхности которой последовательно расположены слой аморфного оксида алюминия, слой оксида титана модификации рутил и слой нитрида титана, сформированные методом атомно-слоевого осаждения. При этом нанесение слоя оксида алюминия ведут при температуре 270-330°С путем поочередной импульсной подачи в реакционную камеру прекурсоров: гриметилалюминия и озона. Нанесение слоя диоксида титана ведут при температуре 450-500°С путем поочередной импульсной подачи в реакционную камеру прекурсоров: четыреххлористого титана и воды, а нанесение слоя нитрида титана ведут при температуре 460-490°С путем поочередной импульсной подачи в реакционную камеру прекурсоров, в качестве которых используются четыреххлористый титан и аммиак. 2 н.п. ф-лы, 2 ил.

2432634
выдан:
опубликован: 27.10.2011
СЕГНЕТОКЕРАМИЧЕСКИЙ КОНДЕНСАТОРНЫЙ ДИЭЛЕКТРИК ДЛЯ ИЗГОТОВЛЕНИЯ КЕРАМИЧЕСКИХ КОНДЕНСАТОРОВ ТЕМПЕРАТУРНО-СТАБИЛЬНОЙ ГРУППЫ

Изобретение относится к технологии изготовления многослойных керамических конденсаторов температурно-стабильной группы H20. Техническим результатом изобретения является разработка диэлектрического материала с высокой диэлектрической проницаемостью и низкой температурой спекания. Согласно изобретению конденсаторный диэлектрик содержит титанат бария 95,18÷95,43%, пентаоксид ниобия 1,03÷1,05%, оксид кобальта 0,24÷0,22%, углекислый марганец 0,04÷0,06%, стеклофритту 1,97÷2,03% и ортосиликат цинка 1,25÷1,50%. 1 табл.

2413325
выдан:
опубликован: 27.02.2011
ПЛЕНОЧНЫЙ КОНДЕНСАТОР

Изобретение относится к электротехнике, а более конкретно к слоистым пленочным электродам для электролитических конденсаторов, слои которых имеют существенные отличия по составу и физической структуре. Техническим результатом изобретения является увеличение удельной емкости. Согласно изобретению пленочный конденсатор содержит многослойную анодную фольгу с высокоразвитой поверхностью, на которой адгезионно закреплена оболочка диэлектрика, покрытая твердым электролитом. В слое диэлектрика толщиной 2-100 нм диспергированы кластеры металла размером 0,5-50 нм, при этом между анодной фольгой и слоем твердого электролита размещено, как минимум, два слоя диэлектрика, разделенных прослойкой из кластеров металла, причем слой диэлектрика сформирован осаждением кластеров металла из гидрозоля посредством импульсных дуговых разрядов последовательно кластеров серебра и кластеров алюминия и/или титана, которые затем на поверхности оболочки окисляют, соответственно, в количестве (мас.%): 1-30 и 70-99. 2 з.п. ф-лы, 2 ил.

2402830
выдан:
опубликован: 27.10.2010
ДИСКОВЫЙ ПРОХОДНОЙ КЕРАМИЧЕСКИЙ КОНДЕНСАТОР ПОСТОЯННОЙ ЕМКОСТИ

Изобретение относится к керамическим фильтровым конденсаторам дискоидальной формы, в частности к организации внутренних электродов в пространстве многослойного проходного конденсатора, и может быть использовано в радиоэлектронной промышленности в качестве емкостных элементов помехоподавляющих фильтров. Техническим результатом заявляемого изобретения является повышение электрической емкости конденсатора при сохранении высокой электрической прочности, повышение надежности в его работе, в том числе в составе помехоподавляющих фильтров. Согласно изобретению разнополярные внутренние электроды (соединенные с общими внешними электродами) попарно расположены на одной стороне множественных керамических слоев и выполнены с параллельным и радиальным разнесением относительно отверстия в теле конденсатора, а на другой стороне тех же самых множественных керамических слоев расположены «плавающие» электроды, не соединенные ни с одним общим внешним электродом, которые частично перекрывают разнополярные электроды, при котором обеспечивается равенство площадей перекрытия и, как следствие, равенство двух соединенных последовательно емкостей, образованных за счет этого перекрытия. 5 ил., 1 табл.

2398302
выдан:
опубликован: 27.08.2010
ИМПУЛЬСНЫЙ НАКОПИТЕЛЬ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

Изобретение относится к электротехнике и может использоваться, в частности, при проектировании и изготовлении импульсных емкостных накопителей энергии. Техническим результатом изобретения является увеличение емкости импульсного накопителя электрической энергии. Согласно изобретению импульсный накопитель электрической энергии включает размещенный между электродами жидкий полярный диэлектрик, при этом между электродами накопителя установлены последовательно друг за другом несколько мембран с ионообменными свойствами таким образом, чтобы к аноду накопителя примыкали мембраны с катионообменным покрытием, а к катоду - мембраны с анионообменным покрытием. В качестве полярного жидкого диэлектрика может быть выбрана деионизованная вода или глицерин. 3 з.п. ф-лы, 3 ил.

2383957
выдан:
опубликован: 10.03.2010
ПЛОСКИЙ МНОГОСЛОЙНЫЙ КОНДЕНСАТОР

Изобретение относится к конденсаторам постоянной емкости. Техническим результатом изобретения является снижение трудоемкости изготовления и увеличения надежности конденсаторов. Согласно изобретению внутренние электроды конденсатора имеют S-образную форму, причем одна из пластин последующего S-образного электрода расположена между двумя плоскостями пластин предыдущего S-образного электрода, пространство между электродами заполнено диэлектриком, внешние электроды образованы соединением торцевых поверхностей S-образных электродов так, что все слои диэлектрика расположены между разнополярными электродами, а электрические выводы присоединены к внешним электродам. 2 ил.

2383077
выдан:
опубликован: 27.02.2010
ПЛОСКИЙ ШЕСТИСЛОЙНЫЙ КОНДЕНСАТОР

Изобретение относится к конденсаторам постоянной емкости. Техническим результатом изобретения является снижение трудоемкости изготовления и увеличения надежности конденсаторов. Согласно изобретению конденсатор содержит два внутренних электрода U-образной формы и один внутренний электрод S-образной формы, одна из пластин каждого U-образного электрода размещена между плоскостями пластин S-образного электрода, пространство между электродами заполнено диэлектриком, U-образные электроды соединены между собой, а электрические выводы присоединены к внешним электродам, образованным соединением пластин U-образных электродов и пластин S-образного электрода. 2 ил.

2383076
выдан:
опубликован: 27.02.2010
ПЛОСКИЙ ОДНОСЛОЙНЫЙ КОНДЕНСАТОР

Изобретение относится к конденсаторам постоянной емкости. Техническим результатом изобретения является снижение трудоемкости изготовления и увеличения надежности конденсаторов. Согласно изобретению контактные узлы образованы продолжением внутренних электродов при их изгибе и соединении с наружной плоскостью внутреннего электрода с образованием замкнутой полости, причем внутренний объем полости заполнен слоем диэлектрика, а на их наружных поверхностях, с противоположных сторон, образованы контактные площадки, каждая длиной не более половины длины контактного узла. 1 ил.

2373594
выдан:
опубликован: 20.11.2009
ПЛЕНОЧНЫЙ КОНДЕНСАТОР

Изобретение относится к электронной технике и может быть использовано при производстве тонкопленочных гибридных и монолитных интегральных схем при изготовлении тонкопленочных конденсаторов. Техническим результатом изобретения является повышение выхода годных конденсаторов за счет снижения влияния дефектов диэлектрической пленки. Согласно изобретению пленочный конденсатор содержит первую и вторую обкладки, выполненные в виде металлических пленок, расположенный между обкладками диэлектрик, токовыводы, выполненные в виде части металлических пленок, выступающих над торцевыми сторонами диэлектрика, введены второй слой диэлектрика и расположенная между слоями диэлектрика промежуточная металлическая обкладка, состоящая из изолированных фрагментов. 2 ил.

2367046
выдан:
опубликован: 10.09.2009
УСТРОЙСТВО ДЛЯ ИЗМЕНЕНИЯ НАПРЯЖЕНИЯ В СЕТИ "ЕМКОСТНОЙ НАСОС"

Изобретение относится к электротехнике и может быть использовано для изменения напряжения в сети. Технический результат состоит в использовании конденсатора в качестве трансформатора. Устройство для изменения напряжения в сети представляет собой соединение набора конденсаторов или видоизмененный конденсатор для «откачивания» электрической энергии из сети с «трансформированием» питающего напряжения. При этом исключаются недостатки, связанные с изготовлением трансформаторов, требующих больших материальных затрат, и применением дорогого сырья, а также его обслуживанием и необходимостью потребителя подстраиваться под имеющиеся мощности заданной трансформаторной подстанции или иных систем изменения напряжения. Устройство может быть установлено в разрыв линии высокой стороны. Установка конденсатора в цепи влечет повышение cos , что благоприятно для цепи в целом. Изобретение не трансформирует электрическую энергию, а как бы откачивает ее из сети. Мощность откачки зависит от емкостей устройства. Для более мощного потребителя требуется большая емкость. Зная необходимые мощности и напряжения потребителя и высокой стороны, легко рассчитать конденсаторы и стандартизировать заявленное устройство в целом. Изобретение позволит значительно снизить потребляемые из сети мощности за счет того, что источник электроэнергии поддерживает в сети не мощность, а гармоники напряжения. 1 з.п. ф-лы, 2 ил.

2364018
выдан:
опубликован: 10.08.2009
СПОСОБ ИЗГОТОВЛЕНИЯ СУПЕРКОНДЕНСАТОРОВ ИЛИ КВАНТОВЫХ АККУМУЛЯТОРОВ И СУПЕРКОНДЕНСАТОР ИЛИ КВАНТОВЫЙ АККУМУЛЯТОР

Изобретение относится к квантовым аккумулятрам и способам их изготовления. Техническим результатом изобретения является создание аккумуляторов с повышенными удельными характеристиками. Согласно изобретению способ и аккумулятор можно реализовать, используя материалы, состоящие из биполярных кристаллов в виде зерен или слоев нанометровой толщины, уложенных в электрически изолирующие матричные материалы или промежуточные слои, нанесенные на комбинированные пленки или на прочные плоские подложки, выполненные в виде намотанных или плоских конденсаторов, которые могут без потерь аккумулировать электрическую энергию в диапазоне свыше 15 МДж/кг на основе явления виртуального фотонного резонанса. 3 н. и 13 з.п. ф-лы.

2357313
выдан:
опубликован: 27.05.2009
Наверх