способ получения кристаллов гидрохлорида гидрата 7- -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов

Классы МПК:C07D501/46 с 7-аминогруппой, ацилированной карбоновыми кислотами, содержащими гетероциклические кольца
A61K31/545  соединения, содержащие 5-тиа-1-азабицикло[420] октановые циклические системы, те соединения, содержащие циклическую систему формулы , например цефалоспорины, цефаклор, цефалексин
Автор(ы):, , ,
Патентообладатель(и):Такеда Кемикал Индастриз Лтд (JP)
Приоритеты:
подача заявки:
1988-12-02
публикация патента:

Использование: в медицине в качестве антимикробных препаратов. Сущность изобретения: продукт: кристаллы гидрохлорида гидрата 7 - b-[(Z) 2-(5-амино-1, 2, 4-тиадиазол-3-ил) - 2 - метоксииминоацетамидо] - 3 - [1-имидазо (1, 2 - в) - пиридазин] метил-3-цефем - 4 - карбоксилата ф-лы, где X - от 0,2 до 4,9 или его сольваты, содержащие 0,8 - 1,2 моля растворителя, выбранного из группы, включающей ацетон, метанол, этанол или диметилформамид. Реагент 1: или его гидрат. Реагент 2: хлористый водород или соляная кислота. Условия реакции: в среде органического растворителя. 14 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13, Рисунок 14, Рисунок 15, Рисунок 16, Рисунок 17, Рисунок 18

Формула изобретения

. Способ получения кристаллов гидрохлорида гидрата 7-способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007016/946.gif" ALIGN="ABSMIDDLE">- [(Z)-2-(5-амино-1,2,4-тиадиазол -3-ил) -2-метоксииминоацетамидо] -3-[1-имидазо-(1,2-b) пиридазин] метил-3-цефем-4-карбоксилата общей формулы

способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007407/2007407-8t.gif" ALIGN="ABSMIDDLE"> способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007407/2007407-9t.gif" ALIGN="ABSMIDDLE"> способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007407/2007407-10t.gif" ALIGN="ABSMIDDLE">

где Х-0,2 - 4,9,

или его сольватов, содержащих 0,8 - 1,2 моль растворителя, выбранного из группы, включающей ацетон, метанол, этанол или диметилформамид, отличающийся тем, что кристаллы 7- способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007016/946.gif" ALIGN="ABSMIDDLE"> -[(Z)-2-(5-амино-1,2,4-тиадиазол-3-ил) -2-метоксииминоацетамидо] -3-[1-имидазо-(1,2b) пиридазин] метил-3-цефем-4- карбоксилата или его гидрат растворяют в водном растворе хлористо-водородной кислоты, добавляют соответствующий растворитель для образования кристаллов, представляющих собой сольваты целевого продукта, выделяют их и в случае необходимости подвергают десольвации органического растворителя, или кристаллы 7- способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007016/946.gif" ALIGN="ABSMIDDLE"> -[(Z)-2-(5-амино-1,2,4-тиадиазол-3-ил) -2-метоксииминоацетамидо] -3-[1-имидазо-(1,2-b) пиридазин] метил-3-цефем-4-карбоксилата или его гидрат обрабатывают газообразным хлористым водородом, разбавленным азотом или двуокисью углерода.

2. Способ по п. 1, отличающийся тем, что десольвацию осуществляют с помощью метода увлажнения путем пропускания увлажненного воздуха или азота через сольват целевого продукта.

3. Способ по п. 1, отличающийся тем, что десольвацию осуществляют путем экстракции растворителя сверхкритической текучей средой.

Описание изобретения к патенту

Изобретение относится к химии цеалоспоринов, а именно к способу получения новых кристаллов гидрохлорида гидрата 7-способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007016/946.gif" ALIGN="ABSMIDDLE">-[(Z)-2-(5-амино-1/2/4-тиадиазол-3-ил)-2-метоксииминоацетамидо] -3-[1-ими азо-(1/2-b)-пиридазин] метил-3-цефем-4-карбоксилата общей формулы

способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007407/2007407-2t.gif" ALIGN="ABSMIDDLE"> способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007407/2007407-3t.gif" ALIGN="ABSMIDDLE"> способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007407/2007407-4t.gif" ALIGN="ABSMIDDLE"> способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007407/2007407-5t.gif" ALIGN="ABSMIDDLE"> способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007407/2007407-6t.gif" ALIGN="ABSMIDDLE"> где X - от 0,2 до 4,9 или его сольватов, содержащих 0,8-1,2 моля растворителя, выбранного из группы, включающей ацетон, метанол, этанол или диметилформамид. Соединения формулы (1) обладают антимикробной активностью и могут быть использованы в медицине.

Известно аналогичное соединение цефема (1) формулы

способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007407/2007407-7t.gif" ALIGN="ABSMIDDLE">

именуемое для краткости SCE-2787 Это соединение характеризуется хорошим антимикробным действием в отношении грамположительных и грамотрицательных бактерий. Однако SCE-2787 в аморфной форме отличается неудовлетворительной устойчивостью и при хранении в обычных условиях в течение длительного времени обесцвечивается и теряет свою чистоту (уменьшается содержание активного ингредиента). Для получения аморфного твердого вещества в достаточно чистом виде необходимы сложные операции очистки

SCE-2787 можно получить в форме кристаллов, однако эта форма SCE-2787 характеризуется недостаточной растворимостью для того, чтобы это соединение можно было применять в качестве медицинского препарата, вводимого путем инъекции.

Целью изобретения является повышение растворимости и устойчивости соединение цефема.

Цель достигается разработкой доступного способа получения новых соединений формулы (1), именуемых для краткости SCE-2787 (HCl), которые отличаются гораздо лучшей растворимостью в воде и могут существовать в форме устойчивых кристаллов. Растворимость в воде новых кристаллов SCE-2787 (HCl) составляет не менее 1000 мг/см3 (15оС, рН 1,0-1,9), в то время как растворимость SCE-2787 (кристаллическая форма) составляет около 17 мг/см3 (25оС). Из этого следует, что растворимость в воде кристаллов SCE-2787 можно значительно увеличить в результате превращения этого соединения в гидрохлорид.

Способ получения кристаллов гидрохлорида гидрата 7-способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007016/946.gif" ALIGN="ABSMIDDLE"> -[(Z)-2-(5-амино-1,2,4-тиадиазол-3-ил)-2-метоксииминоацетамидо] -3-[1-имидазо-(1,2-b)-пиридазин] метил-3-цефем-4-карбоксилата или его сольватов (SCE-2787/HCl) формулы (1) заключается в том, что кристаллы 7- способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007016/946.gif" ALIGN="ABSMIDDLE"> -[(Z)-2-(5-амино-1,2,4-тиадиазол-3-ил)-2-метоксииминоацетамидо] -3- [1-имидазо-(1,2-b)пиридазин] метил-3-це- фем-4-карбоксилата или его гидрат растворяют в водном растворе хлористоводородной кислоты, добавляют растворитель, выбранный из группы, включающей ацетон, метанол, этанол или диметилформамид, для образования кристаллов, представляющих собой сольваты целевого продукта, выделяют их и в случае необходимости подвергают десольвации органического растворителя, или кристаллы 7- способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007016/946.gif" ALIGN="ABSMIDDLE"> -[(Z)-2-(5-амино-1,2,4-тиадиазол-3-ил)-2-метоксиими- ноацетамидо] -3- [1-имидазо-(1,2-b)пиридазин] метил-3-цефем-4-карбоксилата или его гидрат обрабатывают газообразным хлористым водородом, разбавленным азотом или двуокисью углерода. Десольвацию органического растворителя можно осуществлять как с помощью метода увлажнения путем пропускания увлажненного воздуха или азота через сольват целевого продукта, так и путем экстракции растворителя сверхкритической текучей средой.

Исходный материал для осуществления изобретения, а именно SCE-2787, можно получить в аморфной форме по известной методике (1).

В способе получения SCE-2787(HCl) с применением органических растворителей кристаллы SCE-2787 можно получить путем растворения аморфного порошка SCE-2787 в небольшом количестве воды или путем очистки и концентрирования такого порошка обычным способом. Эти кристаллы также можно получить путем нейтрализации водного раствора SCE-2787(HCl) такой щелочью, как бикарбонат натрия.

Обычно SCE-2787 (аморфная или кристаллическая форма) подвергают взаимодействию с одним или несколькими эквивалентами (с экономической точки зрения желательно, чтобы это количество равнялось 5 эквивалентам, хотя верхний предел отсутствует) хлороводорода в присутствии 0,1 мас. ч. или больше (с экономической точки зрения предпочтительно, чтобы это количество равнялось 5 эквивалентам, хотя верхний предел отсутствует) хлороводорода в присутствии 0,1 мас. ч. или больше (с экономической точки зрения предпочтительно, что это количество равнялось 10 весовым частям, хотя верхний предел отсутствует), желательно 1-5 мас. ч. воды по отношению к одной мас. ч. SCE-2787 и в присутствии органического растворителя, количество которого в 1-10 раз превышает количество используемой воды.

В качестве органического растворителя предпочтение отдается гидрофильным органическим растворителям. В качестве органического растворителя, например, можно использовать кетоны (например, ацетон), простые эфиры (например, тетрагидрофуран), низшие спирты (например, метанол, этанол и т. д. ), сложные эфиры (например, этилацетат и т. д. ), углеводороды (например, бензол), амиды (например, N, N-диметилформамид), нитрилы (например, ацетонитрил) и галоидзамещенные углеводороды (например, метиленхлорид). HCl можно использовать в виде водного раствора хлористоводородной кислоты или в форме раствора в любом из указанных выше растворителей, либо альтернативно газообразный хлороводород можно вдувать в раствор или суспензию SCE-2787 (кристаллическая или аморфная форма) в воде или в органическом растворителе. В качестве другого успешного способа взаимодействия HCl с SCE-2787 можно отметить непосредственное взаимодействие газообразного хлороводорода с SCE-2787 в твердом состоянии. В рассмотренных выше случаях взаимодействие между SCE-2787 и HCl в присутствии воды и органического растворителя или без растворителя происходит немедленно. Время, необходимое для кристаллизации, может изменяться в зависимости от количества воды, органического растворителя и HCl наряду с другими факторами. Для достижения высокого выхода на кристаллизацию желательно и предпочтительно затратить от 5 мин до 24 ч.

При осуществлении способа получения с использованием органического растворителя кристаллы SCE-2787(HCl) по этому изобретению можно получить путем растворения или суспендирования кристаллов SCE-2787 в воде и добавления хлороводорода или хлористоводородной кислоты или путем растворения SCE-2787 непосредственно в хлористоводородной кислоте с последующим добавлением органического растворителя для достижения кристаллизации и отделения образовавшихся кристаллов с помощью такого метода, как фильтрация. Сольват с органическим растворителем, полученный таким образом, можно превратить в кристаллы SCE-2787 (HCl), не содержащие органического растворителя, в результате применения соответствующей процедуры удаления органического растворителя из сольвата. Как указывалось выше, предпочтительным способом также является продувка газообразным хлороводородом SCE-2787 в твердом состоянии, т. е. без его растворения или суспендирования в растворителе. В соответствии с этим способом нет необходимости в применении процедуры удаления органического растворителя. В частности, способ получения SCE-2787 (HCl) без применения органических растворителей можно осуществлять путем подачи газа, содержащего газообразный HCl с концентрацией от 0,01% (массовые проценты, здесь и далее массовые проценты обозначаются как "% ", если нет специального указания) до 3% , предпочтительно от 0,05% до 2% , в SCE-2787, находящийся в твердом состоянии. В качестве предпочтительного газа, предназначенного для разбавления газообразного HCl, можно привести двуокись углерода или азот. В этом способе в качестве исходного материала предпочтительно применяется SCE-2787 в кристаллической форме.

При осуществлении более предпочтительного способа с использованием органического растворителя сольваты SCE-2787 (HCl) с органическим растворителем можно получить следующим образом. Например, в случае сольвата с использованием ацетона SCE-2787 (кристаллическая форма) суспендирует в 1/3 - 10 мас. ч. , желательно в 1/3 - 2 мас. ч. , по отношению к одной массовой части SCE-2787, воды, после чего добавляют 1-5 эквивалентов хлористоводородной кислоты для растворения SCE-2787, а затем ацетон в количестве в 2-6 раз, предпочтительно в 3-5 раз, превышающем количество используемой воды, с целью кристаллизации сольвата SCE-2787 (HCl) с ацетоном. Полученный таким образом сольват SCE-787 (HCl) с ацетоном обычно содержит 0,5 - 1 эквивалент ацетона. В случае сольвата с этанолом этот сольват SCE-2787 (HCl) с этанолом предпочтительно выкристаллизовывают из вышеуказанного раствора SCE-2787 в хлористоводородной кислоте при помощи этанола, который используется в количестве в 2-5 раз, желательно в 2-3 раза, превышающем количество воды, используемой в растворе хлористоводородной кислоты. Полученный таким образом сольват SCE-2787 (HCl) с этанолом обычно содержит 0,5-1,5 эквивалента этанола. Кроме того, сольваты, содержащие этанол, метанол, тетрагидрофуран, этилацетат, бензол, N, N-диметилформамид и подобные растворители, указанные выше, можно получить путем перемешивания сольвата SCE-2787 (HCl) с ацетоном, который можно эффективно получить вышеуказанным способом, в соответствующих органических растворителях. Сольват с этанолом также можно получить путем подачи газообразного азота, насыщенного этанолом, в сольват с ацетоном.

Полученные таким образом сольваты SCE-2787 (HCl) имеют кристаллическую структуру, что подтверждается дифракцией рентгеновских лучей в порошке. Полученные сольваты SCE-2787 (HCl) характеризуются высокой чистотой и хорошей устойчивостью.

С другой стороны, желательно, чтобы сольваты с органическими растворителями, полученные вышеуказанным способом, не содержали органических растворителей, если их предполагается использовать в качестве фармацевтических составов. Однако обычная вакуумная сушка не позволяет удалить растворители до удовлетворительного уровня, не вызывая при этом разложения самого SCE-2787 (HCl). В соответствии с изобретением эту проблему можно преодолеть и такие растворители можно эффективно удалять, применяя метод экстракции сверхкритической текучей средой с использованием двуокиси углерода или аналогичного газа, либо применяя метод увлажнения без увеличения температуры. После удаления растворителя продукт SCE-2787 (HCl) можно высушить известным способом, таким как вакуумная сушка или естественная сушка. Из сольватов SCE-2787, таких как сольват SCE-2787 (HCl) с ацетоном или сольват SCE-2787 (HCl) с этанолом, можно удалить растворители с помощью экстракции сверхкритической текучей средой при использовании двуокиси углерода указанным выше образом. Удаление растворителя также можно произвести с помощью метода увлажнения путем пропускания увлажненного воздуха или азота с относительной влажностью 50-90% , желательно 60-80% , через сольваты известным способом. Полученные таким образом продукты SCE-2787 (HCl) имеют кристаллическую структуру, о чем свидетельствует анализ на основе дифракции рентгеновских лучей в порошке.

Экстракция сверхкритической текучей средой осуществляется путем загрузки в экстрактор соединения цефалоспорина в твердой форме и пропускания сверхкритической двуокиси углерода через этот аппарат в непрерывном режиме или с интервалами, в результате чего происходит экстракция растворителя, содержащегося в твердом цефалоспорине, сверхкритической двуокисью углерода. Экстрактором, предназначенным для использования при осуществлении изобретения, является автоклав с регулятором температуры. Необходимо использовать автоклав при критическом давлении двуокиси углерода, а именно 75,3 кг/см2 (абсолютное давление), обычно в диапазоне давлений 100 - 500 кг/см2. Форма экстрактора не имеет критического значения. Однако предпочтение отдается цилиндрическому аппарату вертикального типа, оборудованному впускным отверстием для газа, выпускным отверстием для газа, а также отверстием или крышкой для загрузки и удаления твердого цефалоспорина. Необходимо, чтобы экстрактор был оснащен механизмом, предназначенным для удержания твердого цефалоспорина внутри аппарата. Такой механизм можно выбрать в зависимости от размера зерен и коррозионной агрессивности твердого цефалоспорина, технологической гибкости процесса загрузки и выгрузки, а также экономических характеристик этого оборудования. Например, систему, наиболее подходящую для этой цели, можно выбрать на основании следующего: система, включающая перфорированную пластину в нижней части аппарата, которая покрыта фильтровальной тканью или проволочной тканью (например, проволочная ткань из нержавеющей стали) для удержания твердого соединения; система, включающая пористый спеченный металл (например, нержавеющая сталь) или керамический фильтр; и система, включающая цилиндрический аппарат, основание которого застелено проволочной тканью (например, проволочная ткань из нержавеющей стали) или фильтровальной тканью, причем этот аппарат помещается в экстрактор после его заполнения твердым соединением цефалоспорина.

На фиг. 1, 2 показаны оборудования, предназначенные для использования при осуществлении этого способа.

Двуокись углерода, подаваемая из цилиндра для двуокиси углерода 1, ожижается в конденсаторе 2 и перекачивается под давлением при помощи дозирующего насоса 3, работающего под высоким давлением. Ожиженную двуокись углерода нагревают до заданной температуры в нагревателе 4, в результате чего она превращается в сверхкритическую двуокись кислорода, которую затем подают в экстрактор 5, заполненный заранее твердым соединением цефалоспорина. Сверхкритическая двуокись углерода соприкасается с твердым соединением цефалоспорина и экстрагирует из него остаточный растворитель, после чего выводится из этого аппарата через регулятор давления 6 (фиг. 1).

Ожиженную двуокись углерода подают из цилиндра для двуокиси углерода 1 непосредственно в дозирующий насос 3, работающий под высоким давлением в котором она сжимается и перекачивается в нагреватель 4 для превращения в сверхкритическую двуокись углерода (фиг. 2). Дальнейший цикл аналогичен описанному выше со ссылкой на рис. 1.

Сверхкритическая двуокись (фиг. 1, 2) углерода поступает в экстрактор 5 через верхнюю часть и направляется в его нижнюю часть. Можно использовать также и противоположное направление потока. В этом случае предпочтительно установить фильтр в верхней части аппарата или в непосредственной близости от выпускного отверстия аппарата, с тем чтобы предотвратить потерю порошкообразного соединения цефалоспорина и засорение трубопровода и/или клапана в выпускной линии.

Сверхкритическая двуокись углерода, предназначенная для использования в соответствии с изобретением, предпочтительно должна иметь температуру не ниже критической температуры, равной 31,1о, и давление не ниже критического давления, равного 75,3 кг/см2 (абсолютное давление).

Температура сверхкритической двуокиси углерода, предназначенной для использования в соответствии с изобретением, может находиться на любом уровне не ниже критической температуры двуокиси углерода (31,1оС), но предпочтительно должна находиться в интервале от 35 до 50оС с точки зрения возможности осуществления контроля за температурой, теплостойкости соединения цефалоспорина и так далее. Давление сверхкритической двуокиси углерода может находиться на любом уровне, но не должно быть ниже критического давления двуокиси углерода (75,3 кг/см2, абсолютное давление), причем с точки зрения возможности осуществления контроля за давлением и экономичности наряду с другими параметрами оно предпочтительно должно равняться 80-300 кг/см2(абсолютное давление). Скорость потока сверхкритической двуокиси углерода не имеет критического значения, но обычно должна находиться в интервале от 0,5 до 50 кг/ч на килограмм твердого соединения цефалоспорина.

Также могут применяться условия, аналогичные тем, которые используются в обычном методе удаления растворителя путем увлажнения. Таким образом, сверхкритическую двуокись углерода можно использовать в увлажненном состоянии, либо содержание влаги в твердом соединении цефалоспорина можно отрегулировать до выполнения операции по удалению растворителя. Например, удаленный растворитель может выводиться вместе со сверхкритической двуокисью углерода, содержащей 0,1-5% (массовые проценты) водяного пара, или после увлажнения твердого соединения цефалоспорина до влажности, равной 5-50% (массовые проценты), на основании выхода соединения цефалоспорина после сушки.

Если соединение цефалоспорина содержит несколько растворителей, эти растворители можно удалять одновременно. Твердое соединение цефалоспорина предпочтительно используется в виде порошка, приготовленного заранее путем измельчения.

В соответствии с методом увлажнения удаление органического растворителя может осуществляться обычным способом путем пропускания увлажненного воздуха или азота с относительной влажностью 50 - 90% , желательно 60 - 80% , через сольват SCE-2787 (HCl) с органическим растворителем.

Полученный таким образом SCE-2787 (HCl) имеет кристаллическую структуру, о чем свидетельствует анализ на основе дифракции рентгеновских лучей в порошке.

Кристаллы (SCE-2787 (HCl) включают, например, следующие три типичные кристаллические формы:

(А): кристаллическая форма, для которой характерна картина дифракции рентгеновских лучей в порошке, показанная на фиг. 3. (характеристические пики в параметрах кристаллической решетки (d), соответствующих 14,2, 7,4, 4,9, 4,7, 4,1, 3,8, 3,7, 3,5, 3,4, 3,3)

(В): кристаллическая форма, для которой характерна картина дифракции рентгеновских лучей в порошке, показанная на фиг. 4.

(характеристические пики в параметрах кристаллической решетки (d) соответствующих 8,6, 6,5, 5,4, 4,2, 3,6, 3,4) и

(С): кристаллическая форма, для которой характерна картина дифракции рентгеновских лучей в порошке, показанная на фиг. 5 (характеристические пики в параметрах кристаллической решетки (d) соответствующих 7,3, 7,0, 6,6, 5,3, 4,9, 4,8, 4,0, 3,6, 3,4).

Кристаллы SCE-2787 (HCl), полученные в соответствии с изобретением, можно использовать в качестве вводимого в виде инъекции медицинского химического вещества и можно включать в фармацевтические составы обычным способом.

Кристаллы SCE-2787 (HCl) в соответствии с этим изобретением обладают более высокой устойчивостью по сравнению с известной формой SCE-2787 (аморфная), что иллюстрируется далее примерами. Кроме того, при сравнении с SCE-2787 (кристаллическая форма) видно, что они характеризуются значительно более высокой растворимостью в воде. Они в основном не содержат остаточных растворителей, имеют высокую чистоту и поэтому могут использоваться в фармацевтических составах.

Следующие рабочие примеры и справочные примеры иллюстрируют изобретение более детально.

В справочных примерах данные устойчивости даны в виде процентных значений остаточной устойчивости, определяемых при помощи высокоэффективной жидкостной хроматографии после хранения в соответствующих условиях, описанных для данного периода.

Справочный пример 1. Получение SCE-2787 (кристаллическая форма) из SCE-2787 (аморфная форма).

В 400 мл дистиллированной воды растворяли 100 г лиофилизованного продукта SCE-2787 (аморфна форма), полученного в соответствии с процедурой, описанной в (1), после чего вызывалась кристаллизация в результате перемешивания при комнатной температуре в течение 1,5 ч. Образовавшиеся кристаллы отделяли фильтрованием, промывали 100 мл дистиллированной воды и высушивали при пониженном давлении с образованием 77,6 г SCE-2787 (кристаллическая форма), т. пл. 180-183оС (разл. ).

Элементный анализ:

Высчитанное значение для С19Н17N9S2O5 способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007001/729.gif" ALIGN="ABSMIDDLE"> 3,3 H2O, %

C 39, 69; Н 4,14; N 21,92; S 11,15

Полученное значение: C 39,81; Н 3,88; N 21,92; S 11,45

На фиг. 6 показана картина дифракции рентгеновских лучей в порошке (Cu Xa, 40 кв, 100 мА).

Справочный пример 2. Получение SCE-2787 (кристаллическая форма) из раствора SCE-2787 в хлористоводородной кислоте.

В 300 мл дистиллированной воды суспендировали 56,6 г SCE-2787 (кристаллическая форма), полученного в справочном примере 1. Затем в эту суспензию добавляли 100 см3 1 н. раствора хлористоводородной кислоты для растворения кристаллов. Полученный раствор доводили до рН 4 с помощью безводного карбоната натрия. Вызывали кристаллизацию, оставив эту смесь для выстаивания при комнатной температуре в течение 3 ч при периодическом встряхивании. Полученные таким образом кристаллы промывали 150 мл дистиллированной воды и высушивали при пониженном давлении с образованием 42,4 г SCE-2787 (кристаллическая форма).

Справочный пример 3. Получение SCE-2787 (HCl) (аморфная форма).

В 20 мл дистиллированной воды суспендировали 515 мг SCE-2787 (кристаллическая форма), полученного в справочном примере 1, добавляли 1 мл 1 н. раствора хлористоводородной кислоты и путем лиофилизации получали SCE-2787 (HCl) (аморфная форма). Влажность этого продукта равнялась 3,5% .

Элементный анализ:

Высчитанное значение для С19Н18N9ClO5S2 способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007001/729.gif" ALIGN="ABSMIDDLE">2,5H2O: %

C 38,22; Н 3,88; N 21,11; Cl 5,94

Полученное значение С 38,04; Н 4,05; N 21,26; Cl 5,87

Устойчивость этого продукта, определяемая через 1 неделю хранения при 40оС, равнялась 95% , будучи выраженной в виде процентного значения остаточной устойчивости.

П р и м е р 1. Кристаллы сольвата SCE-2787 (HCl) c ацетоном, полученные из SCE-2787.

В 20 мл 1 н. pаствора хлористоводородной кислоты растворяли 11,3 г SCE-2787 (кристаллическая форма), полученного в справочном примере 1, а затем медленно при перемешивании добавляли 77 мл ацетона. Полученную смесь перемешивали при комнатной температуре в течение 7 ч с целью осуществления кристаллизации. Образовавшиеся кристаллы отделяли фильтрованием, промывали 20 мл смеси ацетона и воды (6: 1), а затем 40 мл ацетона и подвергали естественной сушке при продувке воздухом, в результате чего было получено 7,6 г сольватов SCE-2787 (HCl) с ацетоном. На фиг. 7 показана картина дифракции рентгеновских лучей в порошке (Cu Xa, 40 кв, 70 мА).

Этот продукт имел влажность, равную 2,6% , и содержание ацетона, равное 8,0% (0,85 моля). Данные устойчивости для этого продукта, полученные через 8 дней хранения при температуре 40 и 60оС соответственно представляли 98 и 97% , будучи выраженными в виде процентного значения остаточной устойчивости.

П р и м е р 2. Кристаллы сольвата SCE-2787 (HCl) с ацетоном, полученные из SCE-2787.

В 240 мл 3 н. раствора хлористоводородной кислоты растворяли 138,4 г SCE-2787 (кристаллическая форма), полученного в справочном примере 1. Затем медленно при перемешивании добавляли ацетон (720 мл). После добавления затравочных кристаллов полученную смесь перемешивали при комнатной температуре в течение 2 ч для осуществления кристаллизации. Кроме того, в течение 1 ч по каплям добавляли 360 мл ацетона, и после окончания капания полученную смесь перемешивали в течение 4 ч для достижения дальнейшей кристаллизации. Образовавшиеся кристаллы отделяли фильтрованием, промывали 195 мл смеси ацетона и воды (6: 1), а также 480 мл ацетона и высушивали в потоке сухого воздуха с образованием 126,6 г сольватов SCE-2787 (HCl) с ацетоном. Этот продукт имел влажность 5,3% и содержание ацетона 7,3% (0,8 моля).

П р и м е р 3. Кристаллы сольвата SCE-2787 (HCl) с этанолом, полученные из SCE-2787. В 30 мл 2 н. раствора хлористоводородной кислоты растворяли 11,2 г SCE-2787 (кристаллическая форма), полученного в справочном примере 1. Затем медленно при перемешивании добавляли этанол (60 мл), полученную смесь перемешивали при комнатной температуре в течение 30 ч для осуществления кристаллизации. Образовавшиеся кристаллы отделяли фильтрованием и промывали 50 мл смеси этанола и воды (4: 1). После дальнейшей промывки 50 мл этанола кристаллы высушивали в потоке сухого воздуха с образованием 5,8 г сольватов SCE-2787 (HCl) с этанолом. Этот продукт имел влажность 4,8% и содержание этанола 8,6% (1,2 моля).

На фиг. 8 показана картина дифракции рентгеновских лучей в порошке (Cu Xa, 40 кВ, 100 мА).

П р и м е р 4. Кристаллы сольвата SCE-2787 (HCl) с этанолом, полученные из сольвата SCE-2787 (HCl) с ацетоном. В 30 мл этанола суспендировали 3,0 г сольватов SCE-2787 (HCl) с ацетатом, полученных в примере 2, после чего эту суспензию перемешивали в течение 4,5 ч. Образовавшиеся кристаллы собирали фильтрованием, промывали 35 мл этанола, высушивали в потоке сухого воздуха и далее сушили при пониженном давлении с образованием 2,8 г сольватов SCE-2787 (HCl) с этанолом. Этот продукт имел влажность 3,0% и содержание этанола 7,5% (1,0 моль). Спектрометр ЯМР не показал наличия ацетона. Данные устойчивости для этого продукта, определяемые через 8 дней хранения при температуре 40 и 60оС соответственно равнялись 98 и 98% , будучи выраженными в виде процентного значения остаточной устойчивости.

П р и м е р 5. Кристаллы сольвата SCE-2787 (HCl) с метанолом, полученные из сольвата SCE-2787 (HCl) с ацетоном. Суспензию 1 г сольватов SCE-2787 (HCl) с ацетоном, полученных в примере 2, в 10 мл метанола перемешивали при комнатной температуре в течение 6 ч. Полученные таким образом кристаллы промывали 5 мл метанола и высушивали в потоке сухого воздуха с образованием 890 мг сольватов SCE-2787 (HCl) с метанолом. Этот продукт имел влажность 3,1% . Спектроскопия ЯМР показала, что содержание метанола равнялось 1 молю и что ацетон отсутствовал.

На фиг. 9 показана картина дифракции рентгеновских лучей в порошке (Cu Xa, 40 кВ, 70 мА) для этого продукта.

П р и м е р 6. Кристаллы сольвата SCE-2787 (HCl) с N, N-диметилформамидом, полученные из сольвата SCE-2787 (HCl) с ацетоном.

Суспензию 1 г сольватов SCE-2787 (HCl) с ацетоном, полученную в примере 2, в 10 мл N, N-диметилформамида перемешивали при комнатной температуре в течение 6 ч. Полученные таким образом кристаллы промывали 5 мл N, N-диметилформамида и высушивали в потоке сухого воздуха с образованием 625 мг сольватов SCE-2787 (HCl) с N, N-диметилформамидом. Этот продукт имел влажность 2,3% . Спектроскопия ЯМР показала, что этот продукт содержал 1 моль N, N-диметилформамида. Присутствие ацетона обнаружено не было.

На фиг. 10 показана картина дифракции рентгеновских лучей в порошке (Сu Xa, 40 кВ, 70 мА).

П р и м е р 7. Удаление растворителя из сольвата SCE-2787 (HCl) с ацетоном путем экстракции сверхкритической текучей средой.

Сольваты SCE-2787 (HCl) с ацетоном, полученные в примере 2, загружали в цилиндрический аппарат вертикального типа с диаметром 25 мм и высотой 50 мм, в нижней части которого находилась фильтровальная пластина. Экстракционное удаление ацетона производили путем пропускания двуокиси углерода через слой порошка от верхней части до основания аппарата (скорость потока: 2 л в минуту при наличии стандартных условий), при этом температуру снаружи аппарата и температуру на впуске текучей среды устанавливали равной 40оС, а давление внутри аппарата доводили до 200 кг/см2. (Использовали оборудование, изображенное на фиг. 1).

Продукт имел влажность 3,7% . Газовая хроматография показала, что содержание остаточного ацетона равнялось 0,5% .

Спектр ЯМР (DMSO-d6): 3, 48/2H, dd, J = 26,1, 18,9 Гц 3,87/3H, S), 5,17 (1Н, d, J = 5,4 Гц), 5,50 (2Н, широкий S 5,85 (1Н, dd, J = 9,0, 5,4 Гц), 8,04 (1Н dd, J = 9,0, 4,5 Гц), 8,41 (1Н, d, J = 1,8 Гц), 8,41 (1Н, d, J = 1,8 Гц) 8,85 (1Н, d, J = 1,8 Гц), 8,98 (1Н, d, J = 9,0 Гц), 9,11 (1Н, d, J = 4,5 Гц).

На фиг. 11 показана картина дифракции рентгеновских лучей в порошке (Cu Xa, 40 кв, 70 мА).

П р и м е р 8. Удаление растворителя из сольвата SCE-2787 (HCl) с этанолом путем экстракции сверхкритической текучей средой.

4 г сольвата SCE-2787 (HCl) с этанолом, полученного в примере 3, подвергали удалению растворителя так же, как в примере 7, в результате чего было получено 3,5 г SCE-2787 (HCl). Этот продукт имел влажность 27% . Газовая хроматография показала, что содержание остаточного этанола составляло 0,1% или меньше. Этот продукт позволил получить спектр ЯМР, который был в основном аналогичен спектру, полученному для продукта по примеру 7. Данные устойчивости для этого продукта, определяемые через 3 недели хранения при температуре 40 и 60оС соответственно представляли 98 и 94% , будучи выраженными в виде процентного значения остаточной устойчивости.

П р и м е р 9. Удаление органического растворителя из сольвата SCE-2787 (HCl) с ацетоном путем увлажнения.

5,0-граммовую порцию сольвата SCE-2787 (HCl) с ацетоном, полученного в примере 2, распределяли по стеклянному фильтру, и удаление растворителя производили в результате пропускания через фильтр и слой сольвата потока воздуха, увлажненного при прохождении через слой воды, находящийся при температуре 10оС (скорость потока: 1 л в 1 мин). Продукт, полученный после удаления растворителя, высушивали при пониженном давлении с образованием 4,85 г SCE-2787 (HCl). Этот продукт имел влажность 8,2% . Спектроскопия ЯМР показала, что содержание остаточного ацетона было не более 0,2% . Для этого продукта был получен спектр ЯМР, который в основном не отличался от спектра, полученного в примере 7.

Элементный анализ:

Высчитанное значение для С19Н18N9ClO5S2 способ получения кристаллов гидрохлорида гидрата 7- <img src= -[(z)- 2-(5-амино - 1,2,4-тиадиазол - 3-ил)-2- метоксииминоацетамидо] - 3 - [1-имидазо-(1,2-b) пиридазин] метил - 3 - цефем-4-карбоксилата или его сольватов, патент № 2007407" SRC="/images/patents/466/2007001/729.gif" ALIGN="ABSMIDDLE"> 2,5 H2O; %

С 38,22; Н 3,88; N 21,11; Сl 5,94

Полученное значение: C 38,17; H 3,56; N 21,02; Cl 5,96

П р и м е р 10. Удаление растворителя из сольвата SCE-2787 (HCl) с этанолом путем увлажнения.

4,0-граммовую порцию сольвата SCE-2787 (HCl) с этанолом, полученного в примере 4, помещали на стеклянный фильтр и удаляли растворитель в результате пропускания через фильтр и слой сольвата потока воздуха, увлажненного при прохождении через насыщенный водный раствор ацетата натрия с образованием 3,0 г SCE-2787 (HCl). Газовая хроматография показала, что этот продукт имел содержание остаточного этанола, равное 0,1% или меньше. Полученный таким образом SCE-2787 (HCl) высушивали при пониженном давлении. Высушенный продукт испытывали в отношении устойчивости при различных водных условиях. Данные процентного значения остаточной устойчивости, полученные через 1 неделю или 5 недель хранения при температуре 40оС или 60оС, показаны в приведенной ниже табл. 5.

П р и м е р 11. Превращение кристаллов SCE-2787 в кристаллы SCE-2787 (HCl) с использованием газообразного хлороводорода, разбавленного азотом.

Кристаллами SCE-2787 (2,5 г, влажность 2,4% ), полученными в соответствии со справочным примером 1, наполняли цилиндрический стеклянный фильтр вертикального типа с диаметром 25 мм. Через слой кристаллов с верхней стороны аппарата вертикально вниз в течение 25 ч пропускали поток 0,1% газообразного HCl, который получали путем смешения 1% газообразного HCl (разбавленного азотом) при скорости потока 200 мл/мин и газообразного азота при скорости потока 1800 мл/мин, а затем пропускали через U-образную трубку, заполненную хлористым кальцием для высушивания, в результате чего были получены кристаллы SCE-2787 (HCl). Полученные таким образом кристаллы далее подвергали воздействию потока газообразного азота в течение 11 ч, что позволило получить кристаллы SCE-2787 (HCl), имеющие картину дифракции рентгеновских лучей в порошке (Cu Xa, 50 кВ, 100 мА), показанную на рис. 12.

П р и м е р 12. Превращение кристаллов SCE-2787 в кристаллы SCE-2787 (HCl) с использованием газообразного хлороводорода, разбавленного двуокисью углерода.

Кристаллами SCE-2787 (2,5 г, влажность 9,1% ), полученными в соответствии со справочным примером 1, заполняли такой же стеклянный фильтр, что и в примере 1. Через слой кристаллов с верхней стороны аппарата вертикально вниз в течение 20 ч пропускали поток 0,1% газообразного хлороводорода, который получали в результате смешения 1% газообразного HCl (разбавленного азотом) при скорости потока 800 мл/мин и газообразной двуокиси углерода при скорости потока 7200 мл/мин, а затем пропускали через U-образную трубку, заполненную хлористым кальцием для высушивания, в результате чего были получены кристаллы SCE-2787 (HCl). Полученные таким образом кристаллы подвергали дальнейшему воздействию потока газообразной двуокиси углерода в течение 12 ч, что позволило получить кристаллы SCE-2787 (HCl), имеющие картину дифракции рентгеновских лучей в порошке (Cu Xa, 50 кВ, 100 мА), изображенную на фиг. 13. Этот продукт содержал 3,6% влаги и 1,0 моль HCl.

П р и м е р 13. В 1 мл 1 н. раствора хлористоводородной кислоты растворяли 536 мг SCE-2787 (кристаллическая форма), после чего этот раствор концентрировали при пониженном давлении до половины объема. К остатку добавляли N, N-диметилформамид (1 мл), в результате этого образовался раствор. При стимулировании этого раствора шпателем к нему медленно по каплям добавляли 5 мл ацетона. Непрерывное стимулирование этого раствора при комнатной температуре вызвало медленную кристаллизацию. Наблюдение при помощи поляризационного микроскопа показало, что этот продукт имел кристаллическую структуру. С другой стороны, 5,3 мг SCE-2787 (кристаллы) растворяли в 1 н. растворе хлористоводородной кислоты и в этот раствор при перемешивании медленно добавляли 4 мл ацетона. Добавление в эту смесь кристаллов, полученных выше, в качестве затравочных кристаллов при комнатной температуре вызвало постепенную кристаллизацию. Образовавшиеся кристаллы собирали фильтрованием при пониженном давлении. Собранные кристаллы промывали ацетоном и высушивали при пониженном давлении с образованием 280 мг кристаллов SCE-2787 (HCl) в виде сольвата с ацетоном. Этот продукт имел влажность 2,6% и содержание ацетона 8,0% .

П р и м е р 14. Удаление растворителя из сольвата SCE-2787 (HCl) с этанолом путем увлажнения.

3,0-граммовую порцию кристаллов сольвата SCE-2787 (HCl) с этанолом (содержание этанола 9,9% , влажность 0,83% ), полученного в соответствии с методом, аналогичным методу, представленному в примере 4, помещали на цилиндрический стеклянный фильтр вертикального типа с диаметром 25 мм и удаляли растворитель путем пропускания через фильтр и слой сольвата потока газообразного азота, увлажненного в результате прохождения через слой воды при температуре 18оС, в течение 3 ч, что позволило получить 3,0 г кристаллов SCE-2787 (HCl), имеющего картину дифракции рентгеновских лучей в порошке (Cu Xa, 50 кВ, 100 мА), изображенную на фиг. 14. Этот продукт имел влажность 13,7% , и газовая хроматография показала, что содержание остаточного этанола не превышало 0,01% .

В табл. 1 представлен состав целевых продуктов, полученных по примерам 1-14.

SCE-2787 (HCl) (кристаллический) обладает более употребительными свойствами и преимуществами в сравнении с SCE-2787 (свободная форма, аморфный). Причина состоит в том, что первое из названных соединений кристаллизуется и в этом проявляются преимущества в отношении очистки.

Дополнительно к вышеуказанному, SCE-2787 (HCl) (кристаллический) обладает повышенной устойчивостью в сравнении с известным продуктом SCE (2787) (аморфным), что подтверждается следующими сравнительными данными:

SCE-2787 (кристаллический) может быть получен, однако SCE-2787 (кристаллический) хуже растворим в воде, чем это показано для SCE-2787 (HCl) (кристаллического) из нижеследующего:

Целевое соединение (1) по настоящему изобретению, т. е. SCE-2787 (HCl) (кристаллическое) является, по сравнению не только с соединением SCE-2787 (аморфным), но и по сравнению также с соединением SCE-2787 (кристаллическим) более выгодным в отношении чистоты и стабильности, так же в соотношении растворимости в воде для последнего соединения (кристаллическая форма).

В табл. 3 приведены показатели острой токсичности (LD50 мг/кг) для SCE-2787 (HCl): (56) ЕР N 0203271, кл. C 07 D 501/46, 1986.

Класс C07D501/46 с 7-аминогруппой, ацилированной карбоновыми кислотами, содержащими гетероциклические кольца

способ получения 7-[2-(2-аминотиазол-4-ил)-2(z)-метоксииминоацетамидо]-3-[(1-метил-1-пирролидино)метил]-цеф-3-ем-4-карбоксилата дигидрохлорида моногидрата (цефепима дигидрохлорида моногидрата) -  патент 2469040 (10.12.2012)
7-ациламиноцефалоспорины, замещенные в положении 3 циклическими аминогуанидиновыми группами -  патент 2245884 (10.02.2005)
антибактериальные цефалоспорины, фармацевтическая композиция на их основе и способ лечения -  патент 2183212 (10.06.2002)
производные цефалоспорина или их фармацевтически приемлемые кислотно-аддитивные соли и способы их получения -  патент 2056425 (20.03.1996)
соединение цефема или его фармацевтически приемлемая соль -  патент 2024530 (15.12.1994)
способ получения аминотиазолильных производных цефалоспорина -  патент 2021274 (15.10.1994)
способ получения производных 3-пропенилцефема или их фармакологически приемлемых солей -  патент 2010796 (15.04.1994)
способ получения производных цефема -  патент 2007408 (15.02.1994)

Класс A61K31/545  соединения, содержащие 5-тиа-1-азабицикло[420] октановые циклические системы, те соединения, содержащие циклическую систему формулы , например цефалоспорины, цефаклор, цефалексин

способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в толуоле -  патент 2525158 (10.08.2014)
способ комплексного лечения хронического эндометрита у коров -  патент 2524623 (27.07.2014)
способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в ацетоне -  патент 2523400 (20.07.2014)
способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в альбумине человеческом сывороточном -  патент 2522254 (10.07.2014)
способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в бутиловом спирте -  патент 2517214 (27.05.2014)
способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди -  патент 2514113 (27.04.2014)
способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в полудане -  патент 2514111 (27.04.2014)
способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в диоксане -  патент 2509559 (20.03.2014)
способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в тетрагидрофуране -  патент 2508095 (27.02.2014)
способ получения микрокапсул лекарственных препаратов группы цефалоспоринов в конжаковой камеди в четыреххлористом углероде -  патент 2502510 (27.12.2013)
Наверх