состав для электрохимического нанесения никелевых покрытий

Классы МПК:H01L21/283 осаждением электропроводящих или диэлектрических материалов для электродов
Автор(ы):
Патентообладатель(и):Физико-технический институт им.А.Ф.Иоффе РАН
Приоритеты:
подача заявки:
1991-06-18
публикация патента:

Использование: изобретение относится к электрохимии, в частности к получению никелевых покрытий с низким переходным сопротивлением, например, для омических контактов к полупроводниковым материалам. Сущность: существующие составы не позволяли получать омические гальванические покрытия из водных электролитов на полупроводниках MnSi, FeSi, CoSi. Это достигается тем, что состав содержит сульфат никеля, борную кислоту, хлорид натрия и плавиковую кислоту в следующем соотношении ингредиентов, г/л: сульфат никеля NiSO4состав для электрохимического нанесения никелевых покрытий, патент № 20095717H2O 350 400; борная кислота H3BO3 25 35; хлорид натрия NaCl 4,5 5,5; плавиковая кислота HF 90 110.
Рисунок 1

Формула изобретения

СОСТАВ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО НАНЕСЕНИЯ НИКЕЛЕВЫХ ПОКРЫТИЙ, включающий никельсодержащее соединение и плавиковую кислоту, отличающийся тем, что, с целью получения омических гальванических покрытий на полупроводниках MnSi, FeSi, CoSi из водных электролитов, в качестве никельсодержащего соединения используют сульфат никеля NiSO4 состав для электрохимического нанесения никелевых покрытий, патент № 2009571 7H2O, а электролит дополнительно содержит борную кислоту и хлорид натрия при следующем соотношении инградиентов, г/л:

NiSO4 состав для электрохимического нанесения никелевых покрытий, патент № 2009571 7H2O 350 - 400

H3BO3 25 - 35

NaCl 4,5 - 5,5

HF 90 - 110

Описание изобретения к патенту

Изобретение относится к электрохимии (гальванотехнике), в частности к получению никелевых покрытий с низким переходным сопротивлением, например, для омических контактов к полупроводниковым материалам.

Существует множество составов для осаждения никелевых покрытий на широкий круг материалов, работающих в различных условиях.

Одной из актуальных задач полупроводникового приборостроения является необходимость создания на полупроводниковых материалах омических контактов. Поли- и моно-кристаллические полупроводниковые материалы СoSi, FeSi, MnSi используются в условиях повышенной радиации высоких температур, а также при обычных (нормальных) условиях как: источники термоЭДС для питания электрооборудования; датчики излучений в широком диапазоне частот.

Никель, используемый для получения контактов является материалом стойким к нейтронному облучению; коррозионно-стойким и жаропрочным компонентом в сплавах, что важно при электрохимическом формировании переходной (омической) области контакта полупроводник - никель; аналогом по строению внешних электронных оболочек по отношению к Cr, Mn, Fe, Co (4-й период периодической таблицы элементов Д. И. Менделеева), используемых для синтеза MnSi, CoSi, FeSi.

В гальваностегии наиболее распространены электролиты на основе сульфата никеля. Эти электролиты используют в основном для получения защитно-декоративных покрытий деталей машин для защиты от коррозии при повышенных температурах и в специальных средах (щелочах, некоторых кислотах).

Известен состав для получения никелевых покрытий на металле, в частности на железе [1] . Состав электролита содержит, г/л: Сульфат никеля NiSo4 состав для электрохимического нанесения никелевых покрытий, патент № 20095717H2O 250-300 Хлорид натрия NaCl 10-15 Борная кислота Н3ВО3 25-40 Фторид натрия NaF 5-6 Формальдегид 0,4-0,8 2,6(2,7)-Нафта- лин-дисульфо- кислота 2-4 Сульфонол 0,015

Для случая формирования омических никелевых покрытий на полупроводниках, в частности на MnSi, FeSi, CoSi, этот состав не приемлем, так как содержит большое количество органических добавок, которые захватываются в процессе электролиза растущим никелевым осадком. Это приводит к увеличению электрического сопротивления переходной области никель-полупроводник (потере омичности).

За прототип принят состав [2] для осаждения никелевых покрытий, содержащий г/л: Карбонат никеля NiCO3 5-15 Плавиковая кислота HF 1-2 Дигидрофосфат натрия NaH2PO4 состав для электрохимического нанесения никелевых покрытий, патент № 2009571H2O 15-20 Лимонная кислота С3H4(OH)(CO2H)3 5-7 Гидроокись натрия NaOH 5-10

Данный состав предназначен для осаждения никелевых покрытий на легкие металлы, в частности на магний.

Недостатком данного состава является принципиальная невозможность использования его для получения омических гальванических покрытий на полупроводниковых материалах, в частности на MnSi, FeSi, CoSi, работающих в условиях повышенной радиации и высоких температур ( состав для электрохимического нанесения никелевых покрытий, патент № 200957110С). Неприемлемость этого состава обусловлена тем, что он разработан для узкого круга материалов - легкие металлы, в частности магний и содержит в своем составе ингредиенты в данной совокупности своей (NaOH, NaH2PO2 H2O, CH4(OH)(CO2H)3), не приемлемые при химической обработке MnSi, FeSi, CoSi. Кроме того, даже при осаждении никелевых покрытий из данного электролита на магний покрытия получаются пористые и требуют последующей ультразвуковой обработки деталей в электролите хромирования.

Целью изобретения является обеспечение возможности получения омических гальванических никелевых покрытий на полупроводниках MnSi, FeSi, CoSi.

Цель достигается тем, что в известном составе для электрохимического нанесения никелевых покрытий, включающем никельсодержащее соединение и плавиковую кислоту, согласно формуле изобретения, в качестве никельсодержащего соединения использован сульфат никеля, дополнительно электролит содержит борную кислоту и хлорид натрия в следующем соотношении, г/л: Сернокислый никель NiSO4 состав для электрохимического нанесения никелевых покрытий, патент № 20095717H2O 350-400 Борная кислота H3BO3 25-35 Хлорид натрия NaCl 4,5-5,5 Плавиковая кислота HF 90-110

Необходимость использования в качестве никельсодержащего соединения NiSO4состав для электрохимического нанесения никелевых покрытий, патент № 20095717H2O обусловлена хорошей растворимостью данной соли в предлагаемом составе, что позволяет подбирать оптимальные концентрации никельсодержащего компонента в электролите для широкого круга материалов;

необходимость введения в электролит H3BO3 обусловлена тем, что H3BO3 - буферная добавка - для создания устойчивой концентрации ионов водорода в электролите, - способствует смещению потенциала осаждения никеля в электроположительную сторону;

необходимость присутствия в электролите NaCl связана с тем, что является депассиватором анодов за счет ионов Cl-, т. е. обеспечивает стабильную концентрацию ионов Ni+2 благодаря непрерывному растворению никелевых анодов, - улучшает электропроводность электролита за счет ионов Na+.

Необходимость соблюдения пределов концентрации для ингредиентов в данном электролите было определено экспериментально. Изменение данного соотношения приводит к ухудшению омичности переходной области никелевое покрытие-полупроводник. При выходе за пределы предлагаемых концентраций необходимый для работы полупроводникового прибора уровень омичности (104-106 Ом состав для электрохимического нанесения никелевых покрытий, патент № 2009571см2) исчезает.

Таким образом, каждый из признаков необходим, а все вместе они достаточны для достижения цели изобретения.

Не известна заявленная совокупность признаков, хотя по отдельности используемые ингредиенты известны в качестве составных частей, входящих в состав электролитов, предназначенных для получения никелевых покрытий. Так, например, в состав многих электролитов входят никельсодержащие соединения: NiSO4состав для электрохимического нанесения никелевых покрытий, патент № 2009571 7H2O; NiCO3, однако, находясь в отличной от заявленной совокупности признаков, они приводят к отличному от достигаемого положительному эффекту, а именно к созданию никелевых покрытий на металлах, и не могут быть использованы для гальванического получения омических покрытий на полупроводниках.

Только благодаря всей совокупности заявленных признаков, в результате взаимовлияния всех компонентов, взятых в указанных соотношениях, удалось выявить новое свойство, позволяющее управлять одновременно идущими реакциями травления (полупроводника, а также осаждаемого никелевого покрытия) и осаждения никеля на полупроводники при изменении плотности тока и его полярности, а также стимулировать процессы электролиза на полупроводниках MnSi, FeSi, CoSi за счет собственного излучения химических реакций, идущих в объеме электролита и на электродах, что, в свою очередь, проявилось в новом положительном эффекте, а именно в возможности получения омических гальванических покрытий на полупроводниках MnSi, FeSi, CoSi. Таким образом заявленное техническое решение удовлетворяет критерию "Существенные отличия".

Для приготовления состава для электрохимического осаждения никелевых покрытий были использованы NiSO4состав для электрохимического нанесения никелевых покрытий, патент № 20095717H2O; H3BO3; NaCl; HF. Навески брали в соотношениях, указанных в таблице, и растворяли в воде при 80оС. В качестве полупроводников, на которые наносили никелевые покрытия, использовались прессованные поликристаллы MnSi, FeSi, CoSi. В качестве электролизера использовалась фторопластовая емкость, в которую заливался приготовленный электролит. В качестве анода использовался никель, катода - образец полупроводникового материала. Образцы погружались в электролизер рабочей поверхностью. Для предотвращения осаждения никеля на другие грани образца они предварительно изолировались от воздействия электролита защитным покрытием (например, цапон-лак). Электролиз ведется при пропускании электрического тока 100 А/дм2. При проведении электролиза в течение состав для электрохимического нанесения никелевых покрытий, патент № 200957160 с. было получено никелевое покрытие толщиной состав для электрохимического нанесения никелевых покрытий, патент № 200957110 мкм. Переходное сопротивление на границе металл - полупроводник измерялось микрозондовым методом.

Результаты сведены в таблицу, где приведены концентрации компонентов по минимальному, среднему и максимальному значениям.

Из приведенных примеров видно, что в заявленных приделах концентраций удалось получить омические гальванические покрытия на трех видах полупроводников. Измеренная величина переходного сопротивления во всех примерах находится в пределах 10-4-10-6 Омсостав для электрохимического нанесения никелевых покрытий, патент № 2009571 см2, что свидетельствует о возможности использования полученных никелевых покрытий в качестве омических контактов. За пределами экспериментально найденных соотношений компонентов для данного состава уровень омичности ниже 10-4 Омсостав для электрохимического нанесения никелевых покрытий, патент № 2009571 см2, что является не приемлемым для контактов, изготавливаемых на полупроводниках MnSi, FeSi, CoSi.

Таким образом заявленный состав позволяет получать омические гальванические покрытия на полупроводниках MnSi, FeSi, CoSi , что не обеспечивал состав прототип. (56) Беленький М. А. , Иванов А. Ф. Электроосаждение металлических покрытий, М. : 1985, с. 95.

Иванова Н. Д. Соединения фтора в гальванотехнике. Киев, 1986 с. 83.

Патент ФРГ N 3022402, кл. H 01 L 21/445, 1980.

Класс H01L21/283 осаждением электропроводящих или диэлектрических материалов для электродов

способ изготовления медной многоуровневой металлизации сбис -  патент 2420827 (10.06.2011)
способ формирования электрически изолированных областей кремния в объеме кремниевой пластины -  патент 2403647 (10.11.2010)
способ формирования контактного слоя титан-германий -  патент 2343586 (10.01.2009)
способ заполнения углублений проводящим материалом -  патент 2258274 (10.08.2005)
способ изготовления самосовмещенной встроенной медной металлизации интегральных схем -  патент 2230391 (10.06.2004)
способ изготовления твердотельного прибора -  патент 2189088 (10.09.2002)
способ магнетронного распыления -  патент 2114487 (27.06.1998)
полупроводниковое устройство, обладающее двухслойной силицидной структурой и способы его изготовления /варианты/ -  патент 2113034 (10.06.1998)
способ изготовления инжектирующего контакта к моносульфиду самария -  патент 2089972 (10.09.1997)
способ изготовления полупроводниковых приборов -  патент 2080686 (27.05.1997)
Наверх