способ подготовки образцов аглоспека для анализа его структуры

Классы МПК:C22B1/00 Предварительная обработка руд или скрапа
G01N1/32 полировка; травление 
Автор(ы):, ,
Патентообладатель(и):Хопунов Эдуард Афанасьевич,
Малыгин Александр Викторович,
Тарасов Владимир Борисович
Приоритеты:
подача заявки:
1990-12-29
публикация патента:

Использование: подготовка образцов аглоспека для анализа его структуры. Сущность: образцы с температурой 80 - 100С помещают в эластичный контейнер с твердеющим материалом, где подвергают гидростатическому давлению, при этом твердеющий материал вводят в объеме, составляющем 1,2 - 1,3 объема открытых пор образца. После отверждения образец вынимают из контейнера, разрезают, шлифуют и полируют. 2 ил.
Рисунок 1, Рисунок 2

Формула изобретения

СПОСОБ ПОДГОТОВКИ ОБРАЗЦОВ АГЛОСПЕКА ДЛЯ АНАЛИЗА ЕГО СТРУКТУРЫ, включающий пропитку твердеющим материалом, разделку и подготовку шлифов, отличающийся тем, что, с целью сокращения длительности подготовки образцов и расширения технической возможности анализа путем обеспечения сохранности макроструктуры аглоспека, пропитку твердеющим материалом осуществляют путем помещения образца с температурой 80 - 100oС в эластичный контейнер с твердеющим материалом, где образец подвергают гидростатическому давлению, при этом объем твердеющего материала составляет 1,2 - 1,3 объема открытых пор образца.

Описание изобретения к патенту

Изобретение относится к использованию материалов и может быть использовано при подготовке образцов аглоспека для анализа.

Известен способ приготовления препаратов для микроструктурного анализа влажных пористых тел (1), включающий замещение влаги в порах образца фиксирующим веществом при нагреве, охлаждение и механическую обработку образца. В качестве фиксирующего вещества используют кристаллогидраты солей минеральных кислот, которые вводят в поровое пространство образца в виде водного раствора, постепенно повышая его концентрацию. При этом подвергаемый обработке образец находится под напором столба раствора, а при достижении насыщения и на стадии охлаждения над раствором создают избыточное давление не менее 1,5 атм.

Недостатком способа являются длительность анализа, необходимость постоянного контроля концентрации фиксирующего вещества и неприменимость для подготовки образцов аглоспека, которые не насыщены влагой.

За прототип принят способ подготовки образцов аглоспека для структурного анализа, включающий пропитку охлажденных кусков аглоспека лаком (например, бакелитовым), полимеризацию лака при t = 200-300оС в течение 2-3 ч, повторную пропитку в том же режиме, разделку пробы до размеров 20х20 мм2 и приготовление полировок с двумя операциями пропитки и кипячения образцов в растворе канифоли в ацетоне или спирте. После чего следует традиционная механическая обработки поверхности - шлифовка, полировка и т. д.

Недостатками прототипа являются длительность и многооперационность способа, кроме того способ имеет ограниченные технические возможности для анализа макроструктуры аглоспека, так как не обеспечивается надежность фиксации элементов макроструктуры спека при растрескивании и разрушении ее отдельных фрагментов.

Целью изобретения является снижение длительности подготовки образцов и расширение технической возможности анализа за счет обеспечения сохранности макроструктуры аглоспека.

Для достижения цели образцы охлаждают до температуры 80-100оС, а пропитку твердеющим материалом осуществляют путем помещения образца в эластичный контейнер с твердеющим материалом, где образец подвергают гидростатическому давлению, при этом твердеющий материал вводят в объеме, составляющем 1,2-1,3 объема открытых пор образца.

Охлаждение аглоспека до 80-100оС, применение твердеющего материала под гидростатическим давлением позволяют снизить длительность подготовки аглоспека для структурного анализа в 5-6 раз и обеспечить сохранность макроструктуры за счет устранения термоциклических нагревов и охлаждений и возникающих из-за них термонапряжений. Полимеризация под давлением обеспечивает проникновение твердеющего материала во все полости образца, их заполнение вследствие низкой вязкости нагретого твердеющего материала и последующую фиксацию исходной ненарушенной структуры спека.

Способ осуществляют следующим образом. Куски агломерата после спекания размеров 100-110 мм охлаждают до температуры 80-100оС, погружают в эластичный контейнер, например, из термостойкой резины, заполненный твердеющим материалом, например, эпоксидным компаундом, с объемом, равным 1,2-1,3 объема пор агломерата. Объем пор в образце определяют по ГОСТ 2409-80 СТ СЭВ 980-78, "Метод определения водопоглощения, кажущейся плотности, открытой и общей пористости агломерата и окатышей".

Агломерат, помещенный в контейнер с компаундом, подвергают статическому давлению в автоклаве или путем погружения контейнера в закрытый сосуд с водой. Длительность полимеризации компаунда определяется его составом и колеблется от 10 до 60 мин.

После отверждения компаунда образец вынимают из контейнера, разрезают и готовят шлифы традиционным способом.

На фиг. 1 приведена зависимость степени нарушенности структуры спека от температуры охлаждения спека. Экспериментальная зависимость получена путем подсчета доли разрушения фрагментов структуры спека при различной глубине охлаждения.

Из фиг. 1 следует, что при температуре менее 80оС резко возрастает доля нарушений структуры спека из-за того, что не все фрагменты пропитаны компаундом. При температуре выше 100оС нарушения структуры минимальны, но при этих температурах усложняется работа с компаундом и горячими кусками спека.

На фиг. 2 приведена зависимость степени нарушенности структуры образца, оцениваемая долей вновь образованных микро- и макротрещин в структуре агломерата в зависимости от объема компаунда для пропитки образца.

Видно, что при количествах его менее 1,2 и более 1,3 от объема пор степень нарушенности возрастает в первом случае за счет того, что не все элементы оказались пропитанными, а во втором - за счет появления усадочных макротрещин уже в самом компаунде.

Пример осуществления способа: агломерат после спекания при стандартных условиях разрушали, куски размером 100х110 мм охлаждали до температуры 100оС и погружали в эластичный контейнер из кремнеорганической резины, в котором находился эпоксидный компаунд ЭПД. Объем компаунда в контейнере составлял 1,25 объема открытых пор образца (320 см3). Контейнер с образцом погружался в сосуд с водой температура, которой на протяжении всего цикла твердения составляла 70оС, при этом давление на контейнер (в воде) составило 0,05 атмосфер (избыточных). Длительность полимеризации составила 43 мин, после чего образец извлекался и подвергался механической обработке, шлифовке и полировке.

Оценка степени нарушенности макроструктуры спека осуществлялась по доле площади нарушенных и выкрошившихся блоков, а также по числу появившихся трещин в единице площади полированного образца путем анализа структуры под микроскопом в отраженном свете.

Степень нарушения макроструктуры в данном способе составила 3 % , степень нарушения микроструктуры 3 % , а длительность подготовки образца составила 54 мин. В то время, как в известном способе эти величины составили 48% , 3% и 6 ч соответственно.

Таким образом данный способ позволяет сократить длительность подготовки образцов аглоспека для анализов и расширить технические возможности анализа за счет обеспечения сохранности макроструктуры аглоспека в большеразмерных кусках. (56) Малышева Т. Я. Железорудное сырье: упрочнение при термообработке. М. , Наука, 1988, с. 13-17.

Класс C22B1/00 Предварительная обработка руд или скрапа

способ получения структурированного органоминерального вяжущего -  патент 2529619 (27.09.2014)
способ переработки оловосодержащих сульфидных хвостов и аппарат обжига для его осуществления -  патент 2529349 (27.09.2014)
способ получения окатышей -  патент 2529140 (27.09.2014)
сталеплавильный высокомагнезиальный флюс и способ его получения (варианты) -  патент 2524878 (10.08.2014)
способ комплексной переработки мартит-гидрогематитовой руды -  патент 2521380 (27.06.2014)
способ получения марганцевых окатышей из некальцинированной марганцевой руды и агломерат, полученный данным способом -  патент 2519690 (20.06.2014)
способ переработки титановых шлаков -  патент 2518042 (10.06.2014)
связующее для производства металлургических и угольных брикетов -  патент 2518024 (10.06.2014)
способ термообработки окатышей -  патент 2515775 (20.05.2014)
способ получения пентаоксида ванадия из ванадийсодержащего шлака. -  патент 2515154 (10.05.2014)

Класс G01N1/32 полировка; травление 

способ контроля структурного состояния закаленных низкоуглеродистых сталей -  патент 2498262 (10.11.2013)
способ изготовления препаратов зубов для морфологических исследований эмалевых призм в атомно-силовом (асм) и инвертированном микроскопах -  патент 2458675 (20.08.2012)
способ исследования структуры трубных сталей -  патент 2449055 (27.04.2012)
способ изготовления оптического окна детектирования в монолитной кварцевой капиллярной колонке -  патент 2446390 (27.03.2012)
способ металлографического определения магния или его сплавов в солевой смеси отходов магниевого производства -  патент 2344402 (20.01.2009)
способ металлографического травления оловянистых бронз -  патент 2301981 (27.06.2007)
способ проведения металлографических исследований -  патент 2273014 (27.03.2006)
способ травления оловянистых бронз -  патент 2272271 (20.03.2006)
способ проявления структуры монокристаллических суперсплавов -  патент 2268953 (27.01.2006)
способ определения концентрации и качества распределения высокодисперсных наполнителей в полимерных композициях -  патент 2206882 (20.06.2003)
Наверх