роторная машина
Классы МПК: | F01C1/00 Роторные машины или двигатели F02B53/00 Конструктивные элементы и отличительные особенности роторно-поршневых двигателей или двигателей с качающимися рабочими органами, обусловленные внутренним сгоранием |
Автор(ы): | Трегубов В.Ф., Трегубов М.В. |
Патентообладатель(и): | Трегубов Михаил Вячеславович |
Приоритеты: |
подача заявки:
1990-04-10 публикация патента:
30.05.1994 |
Сущность изобретения: роторная машина содержит статор, внутренняя поверхность которого образована цилиндрической поверхностью с большим радиусом, фигурной поверхностью, включающей цилиндрическую поверхность с малым радиусом, и двумя переходными участками между ними, в зоне которых расположены впускное и выпускное отверстия для рабочего тела, соосный со статором ротор с пазом и шибером. Шибер имеет длину, равную длине рабочей камеры статора, ширину, равную сумме большого и малого радиусов цилиндрических поверхностей, и установлены в пазу ротора с возможностью перемещения, а паз проходит через ось вращения ротора. Статор выполнен в виде втулки с внутренним диаметром, равным удвоенному радиусу, с жестко установленным в ней серповидным вкладышем, внешняя поверхность которого выполнена цилиндрической с радиусом, равным большому радиусу, а радиус внутненней поверхности равен малому радиусу. 5 ил. , 1 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6
Формула изобретения
РОТОРНАЯ МАШИНА, содержащая статор, внутренняя поверхность которого образована цилиндрической поверхностью с большим радиусом R и фигурной поверхностью, включающей цилиндрическую поверхность с малым радиусом r<<R, и двумя переходными участками между ними, в зоне которых расположены впускное и выпускное отверстия для рабочего тела, соосный со статором ротор с пазом и шибером, причем шибер имеет длину, равную длине рабочей камеры статора, ширину, равную сумме большого и малого радиусов цилиндрических поверхностей, и установлен в пазу ротора с возможностью перемещения, а паз проходит через ось вращения ротора, при этом статор выполнен в виде втулки с внутренним диаметром, равным 2R, с жестко установленным в ней серповидным вкладышем, внешняя поверхность которого выполнена цилиндрической с радиусом, равным R, а радиус его внутренней поверхности равен r, отличающийся тем, что, с целью упрощения изготовления, переходные участки имеют радиус R0, определяемый по формулеRo= ,
где L = (R + r)/2;
X0 и Y0 - координаты центра вращения образующей цилиндрической поверхности;
- половина углового расстояния между линиями, проходящими через концы каждого переходного участка.
Описание изобретения к патенту
Изобретение относится к строению двигателей и компрессоров и может быть использовано в пищевой, энергетической, авиационной промышленности, например, для подачи сухого воздуха, в качестве пневмопривода, пневмоинструмента, пневмокомпрессора. Известна роторная машина объемного вытеснения, состоящая из статора, коаксиального с ним ротора и шибера, вставленного в паз ротора, причем внутренняя поверхность статора образована телом вращения сложной формы. Недостаток данной конструкции - сложность ее изготовления, т. к. получение вышеуказанной внутренней поверхности статора сопряжено со значительными технологическими трудностями. Известна роторная машина, содержащая статор, внутренняя поверхность которого образована цилиндрической поверхностью с большим радиусом R и фигурной поверхностью, включающей цилиндрическую поверхность с малым радиусом r, меньшим, чем R и двумя переходными участками между ними, в зоне которых расположены впускные и выпускные отверстия для рабочего тела, соосный со статором ротор с шибером, причем шибер имеет длину, равную длине рабочей камеры статора, ширину, равную сумме малого и большого радиусов цилиндрических поверхностей, и установлен пазу ротора с возможностью перемещения, а паз проходит через ось вращения ротора. Статор выполнен в виде втулки с внутренним диаметром, равным удвоенному большому радиусу с жестко установленным в ней серповидным вкладышем, внешняя поверхность которого выполнена цилиндрической с радиусом, равным большому радиусу, а радиус внутренней цилиндрической поверхности равен малому радиусу. Недостаток известной конструкции - сложность ее изготовления из-за сложности изготовления криволинейных внутренних поверхностей статора. Цель изобретения - упрощение изготовления роторной машины. Сущность изобретения основана на том, что обрабатывать наружные поверхности, имеющие форму, образованную телом вращения (цилиндр), значительно легче, чем внутренние криволинейные поверхности. Поставленная цель достигается тем, что в известной роторной машине переходные участки имеют радиус, определяемый из формулыRo= , где l = (R + r)/2;
Хo и Yo - координаты центра вращения образующей цилиндрической поверхности;
- половина угла, заключенного между прямыми, исходящими из центра сечения машины к концам переходного участка. Среди известных источников информации авторами не найдено решения, в котором эта поверхность была бы представлена как образованная тремя участками, каждый из которых - цилиндр (далее приводится обоснование того, что переходный участок можно описать окружностью), что существенно для заявляемой конструкции и приводит к достижению поставленной цели (упрощение изготовления) в совокупности с выполнением статора в виде двух деталей. На фиг. 1 показана роторная машина, поперечное сечение; на фиг. 2 и 3 иллюстрируется обоснование того, что переходный участок внутренней поверхности статора в сечении можно описать окружностью. Предлагаемая конструкция состоит из коаксиально установленных ротора 1 и статора, представляющего собой жесткое соединение цилиндрической его части 2 и серповидного вкладыша 3, взамен статора из прототипа (фиг. 2), а также шибера 4, установленного в пазу ротора 1 и проходящего через ось его вращения. Вкладыш 3 жестко соединяется своей наружной поверхностью с внутренней поверхностью цилиндрической части статора. Ротор 1 представляет собой вал диаметром d = 2r. Цилиндрическая часть 2 статора представляет собой отрезок трубы внутренним диаметром D = 2R. Шибер 4, длина которого равна длине ротора, а ширина L = R + r и толщина S, имеет скругление радиусом S/2 на скользящих по внутренней поверхности статора торцах. Шибер 4 установлен в паз ротора 1 по скользящей или ходовой посадке. Фигурная поверхность вкладыша образована тремя участками - двумя крайними (переходные участки (аd) и (сb) c радиусом Ro и средним (сd) радиусом r. В стенке статора выполнены два сквозных отверстия (А - входное и Б - выходное), проходящие как сквозь цилиндрическую его часть 2, так и сквозь серповидную 3, таким образом, что расстояние (по прямой) между каналами на выходе их в полость статора в области переходных участков (аd и сb) должно быть не больше, чем R + r. Машина работает следующим образом. В канал А подается газ под давлением. Давление газа на шибер заставляет поворачиваться ротор, при этом камера 6 расширяется, а камера 7 - уменьшается, газ из камеры 7 выталкивается через канал Б. Так как расстояние между каналами на выходе их в полость выбрано не более R + r, то во время вращения ротора не возникает прямых связей между входным и выходным каналами. При вращении ротора рабочий конец шибера, разделяющий камеры расширения и сжатия, прижимается к поверхности статора. При необходимости на концах шибера могут быть установлены плоские уплотнительные пластины по типу поршневых колец двигателей внутреннего сгорания. На фиг. 3 изображено сечение статора, где:
Rn и Rл - ширина правой и левой частей прибора;
Х1 и Y1 - координаты конца переходного участка в точке С;
Х3 и Y3 - координаты конца переходного участка в точке В;
Х2 и Y2 - координаты точки Р, в которой Rп = Rл;
Ro - радиус окружности, описывающей переходный участок;
Хo и Yo - координаты центра окружности, описывающей переходный участок;
- текущий угол, отсчитываемый от начала переходного участка;
2 . - угол, которому соответствует дуга переходного участка cd (или аd). На фиг. 3 более детально показан правый переходный участок при 2 = 90o. При этом ось симметрии сечения повернута против часовой стрелки до совмещения точки С на фиг. 4 с осью Х на фиг. 5. Обращаясь к фиг. 3, приведем доказательство того, что переходная кривая может быть образована окружностью. При вращении ротора с шибером оба конца шибера должны контактировать с поверхностью статора (с зазором, определяемым допусками на изготовление и сборку машины, а также условиями термического расширения деталей при работе). Это означает, что расстояние между точками пересечения линии, проведенной через ось ротора, с внутренней поверхностью статора должно быть неизменным по всем направлениям и равным R+r. Покажем, что данное условие выполняется, если переходные участки описываются спиралью Архимеда. Уравнение спирали Архимеда имеет вид:
= G, (1) где - радиус-вектор, описывающий спираль;
G - константа, определяющая скорость возрастания радиус-вектора;
- угол, определяющий положение радиус-вектора на спирали
Если = + o, тo = G(+o)= G x
x +G1. В нашем случае (фиг. 5) меняется от r до R, а от 0 до 2 т. е. при = 0, G1 = r, при = 2, G = (R-r)/2 . Таким образом, уравнение (1) принимает вид:
= . (R - r) / 2 + r. (2)
Определим ширину шибера L, которая удовлетворяет уравнению (2). Так как ширина шибера равна Rn + Rл, то с учетом симметрии конструкции:
L = 2 - + ; отсюда:
L = R + r. Докажем, что спираль Архимеда с высокой степенью точности можно заменить дугой, окружности, проведенной через три точки: концы переходной кривой (точки с и b фиг. 4), и ее середину - точку Р. Координаты центра окружности Хo и Yo и ее радиус Ro определяют соотношениями:
Принимая во внимание, что
X1 = r, X2 = X2= Cos cos , X3 = R cos 2
Y1 = 0, Y2 = Y2= Sin sin , Y3 = R sin 2
и обозначив (R + r)/2 = l, находим радиус и координаты центра вращения образующей: Ro2 = l2 - 2l (Xo cos + Yo sin ) + Xo2 + Yo2 X0= - Y0=
Погрешность аппроксимации спирали Архимеда окружностью, проходящей через две крайние и среднюю точки переходного участка, определяется как разность длин радиус-векторов, проведенных из центра статора до точек пересечения с окружностью и спиралью:
= o-. Суммарный зазор между концами шибера и переходной поверхностью определяется как алгебраическая сумма погрешностей аппроксимации для углов и 2- . Для спирали Архимеда:
= r + . Для окружности:
20 = X2+ Y2, где x, y- координаты точки дуги. так как X = 0Cos, Y = 0Sin, то из уравнения (X-X0)2+(Y-Y0)2 = R20 получаем: (0Cos-X0)2+ (0Sin-Y0)2 = R20,
20 - 20(X0Cos+Y0Sin) = R20-X20-Y20; отсюда:
0= (X0Cos+Y0Sin)+,
= лев + прав = 0(-r- +0(2-)-r-(2-),
+. Был проведен численный анализ выражения (3) при различных углах и соотношениях радиусов ротора и статора r/R при R = 100 мм. Анализ показывает, что максимальная погрешность аппроксимации соответствует точкам = /2 и = 3/2 (точки М и N на фиг. 5). Во всех рассмотренных случаях максимальная погрешность /R не превышает 2,7 . 10-3. Значения максимальных погрешностей приведены в таблице. Таким образом, переходный участок вкладыша можно выполнить в виде дуги окружности с относительной погрешностью порядка 2,7 . 10-3. По сравнению с прототипом предложенное решение позволяет заменить обработку внутренней поверхности статора сложной формы на обработку внешней цилиндрической поверхности вкладыша с последующей установкой вкладыша в полости статора. Эти операции не вызывают технологических трудностей. Это показывает, что цель изобретения - упрощение изготовления роторной машины - достигнута.
Класс F01C1/00 Роторные машины или двигатели
Класс F02B53/00 Конструктивные элементы и отличительные особенности роторно-поршневых двигателей или двигателей с качающимися рабочими органами, обусловленные внутренним сгоранием