литейная жаростойкая сталь

Классы МПК:C22C38/46 с ванадием
Патентообладатель(и):Гилевич Игорь Борисович
Приоритеты:
подача заявки:
1991-08-05
публикация патента:

Изобретение относится к черной металлургии, в частности к составу хромоникелевой аустенитной стали, обладающей повышенной жаростойкостью при температуре 900 - 1100°С, для изготовления деталей, работающих в уловиях периодического нагрева и охлаждения, например поддонов прокалочных печей, корзин, реторт, звеньев ленточных конвейеров термических печей и других печных инструментов. С целью повышения жаростойкости и эксплуатационной стойкости литых печных инструментов при температуре 950 - 1100°С сталь дополнительно содержит ванадий, медь, алюминий, азот и фосфор при следующем соотношении компонентов, % : углерод 0,30 - 0,40; кремний 1,50 - 2,50; марганец 0,10 - 0,40; хром 22,0 - 30,0; никель 16,0 - 22,0; медь 0,15 - 0,40; ванадий 0,12 - 0,28; молибден 0,25 - 0,45; азот 0,04 -0,08; фосфор 0,06 - 0,15; алюминий 0,025 - 0,070; железо - остальное, при выполнении следующих соотношений: хромовый эквивалент = хром +1,5 кремний +10 /молибден - ванадий/ = 28 - 41, никелевый эквивалент = никель + 30 /фосфор + азот/ = 28 - 41. 2 табл.

Формула изобретения

ЛИТЕЙНАЯ ЖАРОСТОЙКАЯ СТАЛЬ, содержащая углерод, кремний, марганец, хром, никель, молибден, железо, отличающаяся тем, что, с целью повышения жаростойкости и эксплуатационной стойкости при 950 - 1100oС, она дополнительно содержит ванадий, медь, алюминий, азот и фосфор при следующем соотношении компонентов, мас.%:

Углерод 0,30 - 0,40

Кремний 1,50 - 2,50

Марганец 0,10 - 0,40

Хром 22,0 - 30,0

Никель 16,0 - 22,0

Медь 0,15 - 0,40

Ванадий 0,12 - 0,28

Молибден 0,25 - 0,45

Азот 0,04 - 0,08

Фосфор 0,06 - 0,15

Алюминий 0,025 - 0,070

Железо Остальное

при выполнении следующих соотношений:

Хромовый эквивалент-хром+1,5 кремний+10(молибден+ванадий)=28-41

Никелевый эквивалент-никель+30(фосфор+азот)=28-41

Описание изобретения к патенту

Изобретение относится к черной металлургии, в частности к составу хромоникелевой аустенитной стали, обладающей повышенной жаростойкостью при температуре 900-1100оС для изготовления деталей, работающих в условиях периодического нагрева и охлаждения, например поддонов прокалочных печей, корзин, реторт, звеньев ленточных конвейеров термических печей и других печных инструментов.

Известна жаростойкая сталь (см. заявку Японии N 57-25630, кл. С 22 С 38/40, заявл. 31.05.82) следующего химического состава, мас.%: Углерод 0,25-0,45 Кремний 0,50-2,00 Марганец 0-20 Хром 13,0-18,0 Никель 18,0-28,0 Железо Остальное

Однако эта сталь обладает достаточной жаростойкостью при температуре 800-950оС. Известна также литейная жаростойкая сталь (авт.св. N 1454878, кл. С 22 С 38/54) следующего химического состава, мас.%: Углерод 0,20-0,60 Кремний 0,6-2,5 Марганец 0,2-1,5 Хром 20,0-30,0 Никель 20,0-30,0 Титан 0,05-0,50 Кальций 0,05-0,50 Алюминий 0,03-1,00 Бор 0,001-0,010 Железо Остальное

Однако известная сталь в условиях периодического нагрева до 1100оС и охлаждения до 20оС имеет недостаточную жаростойкость и эксплуатационную стойкость.

Наиболее близкой по технической сущности к предлагаемой является литейная жаростойкая аустенитная сталь (см.заявку Японии N 56-21343 МКИ С 22 С 38/48, заявл. 19.05.81) следующего химического состава, мас.%: Углерод 0,05-0,15 Кремний 0-1,0 Марганец 0-2,0 Хром 16,00-19,0 Никель 23,0-24,9 Ниобий 0,5-1,5 Молибден 1,0-3,0 Железо Остальное

Сталь обладает удовлетворительной жаростойкостью и износостойкостью при температуре до 950оС. Эксплуатационная стойкость корзин из известной стали составляет 70-80 теплосмен. Такая стойкость поддонов или опок для прокалки керамических форм при температуре 950-1100оС недостаточна и снижает производительность оборудования из-за потерь рабочего времени на замену изношенных поддонов и опок и требует затрат на их восстановление или изготовление.

Цель изобретения - повышение жаростойкости и эксплуатационной стойкости литых печных инструментов (корзин, поддонов, опок) при температуре 950-1100оС, а также против образования и роста трещин разгара, коробления и истирания при многократном нагреве и охлаждении под нагрузкой.

Поставленная цель достигается тем, что сталь содержит углерод, кремний, марганец, хром, никель, медь, ванадий, молибден, азот, фосфор, алюминий и железо при следующем соотношении, мас.%: Углерод 0,30-0,40 Кремний 1,50-2,50 Марганец 0,10-0,40 Хром 22,0-30,0 Никель 16,0-22,0 Медь 0,15-0,40 Ванадий 0,12-0,28 Молибден 0,25-0,45 Азот 0,04-0,08 Фосфор 0,06-0,15 Алюминий 0,025-0,070 Железо Остальное

Сопоставительный анализ с прототипом позволяет сделать вывод, что заявляемый состав литейной жаростойкой стали отличается от известного соотношением компонентов и дополнительным введением ванадия, меди, алюминия, азота и фосфора, при этом эквивалентные количества хрома Сr экв = % Cr + 1,5% Si + 10(%Mo + %V) и никеля Niэкв = %Ni + 30(%C + %P + %N) должны составлять каждый в пределах 28-41%.

Таким образом, заявляемое техническое решение соответствует критерию "новизна". Анализ известных литейных жаростойких сталей показал, что жаростойкость и эксплуатационная стойкость литых печных инструментов, изготовленных из известных жаростойких сталей, недостаточны в условиях периодического нагрева и охлаждения при температуре 950-1100оС. Предлагаемая литейная жаростойкая сталь содержит дополнительно ванадий, медь, алюминий, азот и фосфор, при этом эквивалентные количества хрома Crэкв = %Cr +1,5%Si + 10(% Mo + %V) и никеля Niэкв = %Ni + 30(%C + %P + %N) должны составлять каждый в пределах 28-41%.

Оптимальное содержание хрома в стали выбрано 26%, а никеля - 19%. Введение 22-30% хрома и 16-22% никеля делает сталь стойкой к высокотемпературному окислению в газовых средах. Снижение содержания хрома ниже 22% и никеля ниже 16% вызывает понижение стойкости стали против химического разрушения поверхности в газовых средах при температуре выше 950оС в нагруженном или слабонагруженном состояниях. При повышении содержания хрома свыше 30% и никеля свыше 22% не наблюдается повышения жаростойкости и эксплуатационной стойкости при температуре до 1100оС.

Весьма важным для повышения жаростойкости и эксплуатационной стойкости жаропрочной стали является равенство эквивалентных количеств хрома и никеля в размере по 28-41%.

Хром и легирующие добавки кремния, молибдена и ванадия, составляющие эквивалентное содержание хрома, существенно влияют на жаростойкость стали. Полезное влияние кремния на жаростойкость стали связано с образованием на поверхности металла защитного слоя фаялита Fе2SiO4 с образованием в свою очередь тонкого слоя SiO2. Кремний положительно влияет на жаростойкость стали при содержании 1,50-2,50%.

Ванадий благополучно влияет на дисперсность и характер распределения первичных карбидов. Содержание ванадия менее 0,12% незначительно влияет на повышение жаростойкости стали, а содержание свыше 0,28% - не дает дальнейшего роста эксплуатационных свойств.

Молибден также значительно измельчает зерно в структуре стали и тем самым повышает жаростойкость ее. Содержание молибдена менее 0,25% незначительно влияет на повышение жаростойкости стали, а содержание свыше 0,45% не дает дальнейшего ощутимого роста эксплуатационных свойств.

Если по сравнению с хромом влияние кремния, как легирующего элемента на повышение жаростойкости стали, равно 1,5, то влияние ванадия и молибдена равно 10.

Никель и легирующие добавки углерода, фосфора и азота, составляющие эквивалентное содержание никеля, существенно влияют на стойкость стали к растеканию при циклических нагревах до 1100оС и охлаждениях, что сказывается в конечном итоге на эксплуатационную стойкость.

Высокая эксплуатационная стойкость стали достигается введением в хромоникелевый аустенит 0,30-0,40% углерода. При содержании углерода ниже 0,30% происходит понижение эксплуатационной стойкости стали, а при содержании выше 0,40% не наблюдается дальнейшего роста жаростойкости.

Фосфор обладает способностью подавлять мартенситное превращение стали, что позволяет понижать содержание никеля. При содержании фосфора ниже 0,06% его влияние не заметно на изменении температуры мартенситного превращения, а добавка фосфора до 0,15% благоприятно влияет на повышение прочности и пластичности при температуре 950-1100оС.

Добавки азота, аналогично фосфору, приводят к подавлению мартенситного превращения стали, что позволяет получать аустенит с пониженным содержанием никеля. В отличие от углерода азот, упрочняя матрицу, не снижает существенно ее пластические свойства. При содержании азота ниже 0,04% его влияние незаметно на повышение сопротивления высокотемпературной деформации, а при содержании выше 0,08% наблюдается понижение свариваемости стали из-за выделений псевдоперлита в зоне шва.

В сравнении с никелем влияние углерода, фосфора и азота, как легирующих элементов, повышающих жаростойкость стали, равно 30.

Медь также как и азот, углерод и фосфор способствует измельчению зерна стали и подавлению мартенситного превращения. При содержании меди ниже 0,15% не заметно влияние на снижение мартенситного превращения, а при содержании меди выше 0,40% не наблюдается дальнейшего снижения температуры мартенситного превращения.

Влияние марганца незначительно на повышении жаростойкости стали, поэтому его содержание должно быть в пределах 0,10-0,40%.

Таким образом, предлагаемый состав компонентов придает стали новые свойства, что позволяет сделать вывод с соответствии заявляемого решения критерию "существенные отличия".

Для экспериментальной проверки заявляемого состава стали были приготовлены 6 опытных плавок и проведены сравнительные исследования свойств предлагаемой и известной сталей.

Опытные плавки выплавляют в основной индукционной печи ИСТ-0,25 емкостью 250 кг с использованием в качестве шихты изношенного печного инструмента из стали марки 30Х24Н19С2Л, отходов легированной стали, содержащей хром, никель, ванадий, молибден, а также феррохрома и никеля.

Химический состав опытных плавок с различным содержанием вводимых компонентов приведен в табл.1.

Химический состав опытной плавки стали 1 соответствует соотношению компонентов ниже нижнего предела заявляемой стали.

Плавки стали 2-4-заявляемая литейная жаростойкая сталь. Химический состав опытной плавки стали 5 соответствует соотношению компонентов выше верхнего предела заявляемой стали.

Сталь 6-химический состав известной стали.

Жаростойкие поддоны, опоки, решетки отливают в формы, получаемые методом вакуумной формовки.

Испытание жаростойкости и эксплуатационной стойкости проводят непосредственно в производственных условиях на проходных прокалочных агрегатах АВА740Л при температуре прокалки оболочковых керамических форм, равной 950 - 1100оС, и времени выдержки в печи 8 ч. Длительность одного термоцикла составляет 16 ч. Жаростойкость определяют по потере массы металла печным инструментом при времени окисления его 100 ч и температуре 950, 1025 и 1100оС.

Эксплуатационную стойкость определяют по количеству теплосмен до появления трещин разгара и по ширине трещин разгара в напряженных местах.

Свойства сталей приведены в табл.2, из которой следует, что жаростойкость и эксплуатационная стойкость предлагаемой стали превышают в 1,5-1,7 раза свойства известной стали.

Класс C22C38/46 с ванадием

высокопрочная среднеуглеродистая комплекснолегированная сталь -  патент 2510424 (27.03.2014)
способ производства штрипсов -  патент 2499843 (27.11.2013)
низкоуглеродистая низколегированная сталь для изготовления крупного горячекатаного сортового и фасонного проката -  патент 2495148 (10.10.2013)
двухслойный стальной прокат -  патент 2487959 (20.07.2013)
способ производства штрипсов из низколегированной стали -  патент 2484147 (10.06.2013)
супербейнитная сталь и способ ее получения -  патент 2479662 (20.04.2013)
рельсовая сталь -  патент 2457272 (27.07.2012)
рельсовая сталь -  патент 2449045 (27.04.2012)
литейная сталь -  патент 2448193 (20.04.2012)
теплостойкая сталь -  патент 2441092 (27.01.2012)
Наверх