способ охлаждения оборудования с вертикальными теплонагруженными каналами в замкнутом объеме

Классы МПК:H01L23/34 приспособления для охлаждения, нагревания, вентиляции или температурной компенсации
H05K7/20 варианты выполнения, облегчающие охлаждение, вентиляцию или подогрев 
Автор(ы):, , , ,
Патентообладатель(и):Всероссийский электротехнический институт им.В.И.Ленина
Приоритеты:
подача заявки:
1991-12-13
публикация патента:

Использование: изобретение относится к электротехнике и может быть использовано для охлаждения оборудования преобразовательной техники с вертикальными температуронагруженными каналами в замкнутом объеме. Сущность изобретения: способ заключается в том, что уменьшение количества теплоносителя путем использования полупогруженного испарительного охлаждения, достигается тем, что охлаждаемое оборудование погружают в теплоноситель частично, т.е на 20 - 40% от его высоты. 1 табл.
Рисунок 1

Формула изобретения

СПОСОБ ОХЛАЖДЕНИЯ ОБОРУДОВАНИЯ С ВЕРТИКАЛЬНЫМИ ТЕПЛОНАГРУЖЕННЫМИ КАНАЛАМИ В ЗАМКНУТОМ ОБЪЕМЕ, включающий частичное погружение оборудования в теплоноситель, отличающийся тем, что частичное погружение оборудования в теплоноситель составляет 20 - 40% от высоты оборудования.

Описание изобретения к патенту

Изобретение относится к электротехнике и может быть использовано для охлаждения оборудования преобразовательной техники с вертикальными температуронагруженными каналами в замкнутом объеме.

Известны способы жидкостного охлаждения электрооборудования в замкнутом объеме, в которых охлаждение происходит с помощью тепловых труб. Способы являются разновидностью испарительного охлаждения, когда охлаждаемое оборудование приводят в контакт одной плоскостью с тепловой трубой. Охлаждаемое оборудование никуда не погружают [1].

К недостаткам таких способов относятся повышенное тепловое сопротивление между охлаждаемой поверхностью и недостаточное охлаждение оборудования в целом.

Наиболее близким по технической сущности является способ охлаждения оборудования с вертикальными температуронагруженными каналами в замкнутом объеме, включающий погружение в теплоноситель последнего. Охлаждаемое оборудование (или его часть) полностью погружают в диэлектрическую жидкость с низкой температурой кипения 50-80оС, налитой в герметичную емкость, и выводят в рабочий режим. В рабочем режиме по мере нагрева охлаждаемого оборудования жидкость закипает, в результате чего имеет место интенсивная теплоотдача с его поверхности [2].

Несмотря на высокую эффективность известный способ охлаждения имеет следующие недостатки: большой расход и, следовательно, стоимость диэлектрической жидкости; дополнительное повышение массы оборудования на величину массы диэлектрической жидкости. Эти недостатки особенно существенны при малом коэффициенте заполнения охлаждаемым оборудованием герметичной емкости (например, охлаждение тел неправильной сложной формы).

Цель изобретения - уменьшение количества теплоносителя путем полупогруженного испарительного охлаждения.

Сущность изобретения состоит в том, что в способе охлаждения оборудования с вертикальными температуронагруженными каналами в замкнутом объеме, включающим погружение в теплоноситель охлаждаемого оборудования, последнее погружают на 20-40% от своей высоты.

Охлаждаемое оборудование, имеющее внутри себя температуронагруженные каналы (например трансформаторно-дроссельное оборудование, где роль каналов играют межобмоточные пространства, а также пространство между обмоткой и магнитопроводом, при проектировании оборудования такие каналы могут быть образованы специально путем применения разного рода кожухов, полых проводников и т. п.) частично погружают в теплоноситель на 20-40% от его высоты, после чего оборудование выводят в рабочий режим. В рабочем режиме в нижней части каналов происходит интенсивное кипение с испарением теплоносителя, в результате чего испаряющийся теплоноситель увлекает частицы жидкости и с большой скоростью устремляется вверх по каналам. Частицы жидкости из парожидкостной струи теплоносителя орошают стенки каналов и испаряются еще раз, понижая тем самым температуру стенок. В то же время в нижней части каналов образуется зона разрежения, в которую постоянно засасываются новые порции теплоносителя. Так как все происходит в замкнутом объеме, то, охлаждаясь, теплоноситель конденсируется в капли, которые, падая, орошают остальную часть охлаждаемого оборудования.

В таблице приведены результаты испытаний трехфазного высокочастотного реактора при охлаждении предлагаемым способом.

Испытания проводились при токе нагрузки 385 А, напряжении 220 В и частоте питающей сети 1550 Гц.

Из таблицы видно, что уменьшение степени погружения до 10% от высоты охлаждаемого оборудования (реактора) ведет к резкому повышению температуры нагрева всех его элементов (допустимая температура нагрева 180оС для Н класса нагревостойкости), а при увеличении степени погружения от 20 до 100% от высоты реактора температура его нагрева изменяется очень незначительно, примерно на 6-8%, но при этом увеличивается расход теплоносителя.

Отсюда может быть сделан вывод, что полупогруженный способ охлаждения (со степенью погружения (20-40)% от высоты охлаждаемого оборудования) позволяет в достаточной степени отвести тепло от оборудования при значительном сокращении (на 60-80%) количества теплоносителя. Применение предлагаемого способа позволит также на 10-15% уменьшить массу оборудования и примерно на столько же и его стоимость.

Класс H01L23/34 приспособления для охлаждения, нагревания, вентиляции или температурной компенсации

охлаждающее устройство, использующее внутренние искусственные струи -  патент 2525826 (20.08.2014)
микронагреватель -  патент 2522751 (20.07.2014)
адаптивный охлаждающий блок мощного полупроводникового устройства -  патент 2518495 (10.06.2014)
тепловой диод -  патент 2511948 (10.04.2014)
каскадное светоизлучающее термоэлектрическое устройство -  патент 2507613 (20.02.2014)
модуль полупроводникового преобразователя электроэнергии -  патент 2504864 (20.01.2014)
устройство для интенсивного охлаждения силовых полупроводниковых приборов -  патент 2498451 (10.11.2013)
устройство для охлаждения силовых полупроводниковых приборов -  патент 2497232 (27.10.2013)
теплопроводный установочный элемент для крепления печатной платы к радиатору -  патент 2495507 (10.10.2013)
гибридная интегральная схема свч -  патент 2489770 (10.08.2013)

Класс H05K7/20 варианты выполнения, облегчающие охлаждение, вентиляцию или подогрев 

система жидкостного охлаждения электронного устройства -  патент 2528567 (20.09.2014)
камера для оборудования -  патент 2526050 (20.08.2014)
охлаждающее устройство, использующее внутренние искусственные струи -  патент 2525826 (20.08.2014)
холодильный агрегат, встраиваемый в стойку -  патент 2524181 (27.07.2014)
устройство для охлаждения силовых электронных модулей -  патент 2523022 (20.07.2014)
система жидкостного охлаждения многопроцессорного вычислительного комплекса, сборка и теплоотводящий модуль -  патент 2522937 (20.07.2014)
полимерная композиция для радиаторов охлаждения светоизлучающих диодов (сид) и способ ее получения -  патент 2522573 (20.07.2014)
жидкостной охладитель -  патент 2522181 (10.07.2014)
реберная объединенная подложка и способ изготовления реберной объединенной подложки -  патент 2521787 (10.07.2014)
устройство для отвода тепла от тепловыделяющих радиоэлементов -  патент 2519925 (20.06.2014)
Наверх