виброзащитное устройство с угловой стабилизацией
Классы МПК: | F16F15/04 с использованием эластичных средств |
Автор(ы): | Выговский Константин Александрович, Коротков Евгений Борисович, Мороз Александр Викторович, Трубников Юрий Михайлович, Юрченко Юрий Федорович, Юсов Юрий Павлович |
Патентообладатель(и): | Выговский Константин Александрович, Коротков Евгений Борисович, Мороз Александр Викторович, Трубников Юрий Михайлович, Юрченко Юрий Федорович, Юсов Юрий Павлович |
Приоритеты: |
подача заявки:
1991-10-28 публикация патента:
30.09.1994 |
Использование: в электронной технике, точном приборостроении, а именно, в виброизолируемых измерительныхи технологических платформах, испытательных системах защиты от вибраций и ударов прецизионных чувствительных элементов. Сущность изобретения: виброзащитное устройство с угловой стабилизацией содержит платформу, пневматические амортизаторы с дросселями, датчик горизонта, усилитель-преобразователь, электродвигатель, кинематическую передачу и пневматические камеры со встречно направленными поршнями и жестко связывающим последние штоком. Шток является выходным звеном пневматической передачи, преобразующей вращение вала электродвигателя в поступательное перемещение штока. Полость каждой пневматической камеры соединена с полостью соответствующего пневматического амортизатора через дроссель. Кинематическая передача может быть выполнена необратимой в виде редуктора, кинематической пары винт-гайка и направляющего устройства. 1 з.п. ф-лы, 1 ил.
Рисунок 1
Формула изобретения
1. ВИБРОЗАЩИТНОЕ УСТРОЙСТВО С УГЛОВОЙ СТАБИЛИЗАЦИЕЙ, содержащее платформу, устанавливаемые на основании и связывающие его с платформой пневматические амортизаторы с дросселями, датчик горизонта, установленный на платформе, и усилитель-преобразователь, вход которого подключен к выходу датчика горизонта, отличающееся тем, что оно снабжено электродвигателем, вход которого соединен с выходом усилителя-преобразователя, кинематической передачей, вход которой связан с валом электродвигателя, и устанавливаемыми на основании пневматическими камерами с встречно направленными поршнями и жестко связывающим последние штоком, являющимся выходным звеном, кинематической передачи, преобразующей вращение вала электродвигателя в поступательное перемещение штока, а полость каждой пневматической камеры соединены с полостью соответствующего пневматического амортизатора через дроссель. 2. Устройство по п. 1, отличающееся тем, что кинематическая передача выполнена необратимой в виде редуктора, кинематической пары винт - гайка, представляющей собой связанную с выходным колесом редуктора и установленную в подшипниках соосно со штоком гайку и выполненную в средней части штока резьбу, и направляющего устройства, образованного выполненным на штоке продольным пазом и входящим в него и закрепляемым на основании пальцем.Описание изобретения к патенту
Изобретение относится к электронной технике, а более конкретно к области создания виброизолируемых измерительных и технологических платформ с прецизионными координатными столами для субмикронных и нанотехнологий изготовления изделий электронной техники. Изобретение может использоваться в области точного приборостроения в испытательных системах для защиты от вибраций и ударов прецизионных чувствительных элементов. Известны различные конструкции пространственных виброзащитных устройств, предназначенных для защиты от внешних вибраций и ударов размещаемого на них прецизионного оборудования, в которых обеспечивается виброзащита от поступательных вибраций основания и сохранение ориентации за счет направляющих устройств. Направляющие устройства имеют различный принцип действия и конструктивное исполнение - в виде упругих систем на плоских пружинах или в виде параллелограммных пространственных механизмов. Направляющие придают виброзащитному устройству высокую угловую жесткость, обеспечивающую сохранение ориентации [1]. Указанные виброзащитные устройства имеют существенный недостаток - ограниченную эффективность виброзащиты, так как направляющие представляют собой конструктивные элементы, по которым вибрация от основания передается на защищаемое оборудование (особенно в диапазоне средних и высоких частот вибраций). Известны конструкции виброзащитных устройств для испытаний чувствительных элементов, в которых используется активный виброзащитный подвес, обеспечивающий как виброзащиту, так и угловую стабилизацию платформы. Пассивная часть виброзащитного устройства выполнена на взаимно независимых пневматических амортизаторах типа Barry Servo level, снабженных регуляторами уровня. Активная часть устройства, образующая с пассивной последовательные каскады виброзащиты, представляет собой сервопривод, управляемый по сигналу датчика горизонта, расположенного на платформе [2]. Недостатки указанных активных виброзащитных устройств: необходимость обеспечения постоянного расхода воздуха, связанную с работой регулятора уровня пневматического амортизатора; значительная статическая нагрузка, которую несет исполнительный элемент сервопривода каскада активной виброзащиты и угловой стабилизации; возрастают требования к мощности приво- да и возникают определенные проблемы, связанные с точностью и ресурсом устройства. Наиболее близким к изобретению по технической сущности и совокупности существенных признаков является виброзащитное устройство, содержащее основание, платформу и установленные между ними последовательно двухкамерные пневматические амортизаторы каскада пассивной виброзащиты, промежуточную массу и электромагнитные исполнительные устройства каскада угловой стабилизации и активной виброзащиты, а также установленные на платформе датчики горизонта и вибропреобразователи, выходы которых связаны со входами соответствующего усилителя-преобразователя. Высокочастотные вибрации основания гасятся двухкамерными пневматическими амортизаторами за счет потерь при перетекании воздуха из одной камеры в другую через дроссельный канал. Угловая стабилизация достигается за счет деформации упругих элементов силами, которые создаются электромагнитными исполнительными устройствами в соответствии с сигналами управления, вырабатываемыми усилителем-преобразователем по сигналу с датчика горизонта [3]. Недостаток устройства, выбранного за прототип - малый амплитудный диапазон угловой стабилизации. Для создания компенсирующего усилия в исполнительном электромагнитном устройстве, например для компенсации изменения нагрузки на опору при работе размещаемых на платформе устройств позиционирования, электромагнитная система должна создать усилие Fк= р (1+Сy/Са), где р - изменение нагрузки на опору; Са, Сy - жесткости пневмоамортизатора и упругого элемента электромагнитного исполнительного устройства опоры соответственно. Указанному усилию соответствует компенсирующее перемещение упругого элемента U=Fк/Cy. Поскольку упругий элемент электромагнитного исполнительного устройства воспринимает всю статическую нагрузку и дополнительно усилие предварительного поджатия, то конструктивно не представляется возможным обеспечить его жесткость меньше, чем жесткость пневмоамортизатора. На практике будет иметь место Сy >> Cа, и, следовательно, Fк >>р. Таким образом, амплитудный диапазон угловой стабилизации будет весьма ограниченным. Применение мощных силовых электромагнитных систем, являющихся источниками магнитного и электрического полей, в виброзащитном устройстве для прецизионного электронного оборудования требует принятия специальных защитных мер по экранировке. Цель изобретения - расширение диапазона и повышение точности угловой стабилизации виброзащищаемой платформы. Цель достигается тем, что устройство снабжено электродвигателем, вход которого соединен с выходом усилителя-преобразователя, кинематической передачей, вход которой связан с валом электродвигателя, и устанавливаемыми на основании пневматическими камерами с встречно-направленными поршнями и жестко связывающим последние штоком, являющимся выходным звеном кинематической передачи, преобразующей вращение вала электродвигателя в поступательное перемещение штока. Полость каждой пневматической камеры соединена с полостью соответствующего пневматического амортизатора через дроссель. Кинематическая передача выполнена необратимой в виде редуктора, кинематической пары винт-гайка, представляющей собой связанную с выходным колесом редуктора и установленную в подшипниках соосно штоку гайку и выполненную в средней части штока резьбу, и направляющего устройства, образованного выполненным на штоке продольным пазом и входящим в него и закрепляемым на основании пальцем. На чертеже изображена схема виброзащитного устройства с угловой стабилизацией. Устройство содержит виброзащищаемую и горизонтируемую платформу 1, пневматические амортизаторы 2, установленные на основании и связывающие его с платформой, дроссели 3, установленный на платформе датчик горизонта 4, выход которого подключен ко входу усилителя-преобразователя 5, электродвигатель 6, вход которого соединен с выходом усилителя-преобразователя, установленные на основании пневматические камеры 7, поршни которых встречно направлены и жестко связаны штоком 8. Полость каждой пневматической камеры 7 соединена с полостью соответствующего пневматического амортизатора через дроссель 3. Шток 8 является выходным звеном кинематической передачи 9, преобразующей вращение вала электродвигателя 6 в поступательное перемещение штока 8. Кинематическая передача 9 выполнена необратимой в виде редуктора 10, кинематической пары винт-гайка и направляющего устройства. Пару винт-гайка образуют резьба, выполненная в средней части штока 8, и гайка 11, установленная в подшипниках соосно штоку и связанная с выходным колесом редуктора. Направляющее устройство образует продольный паз 12 на штоке и входящий в него и закрепляемый на основании палец 13. Устройство работает следующим образом. В исходном состоянии за счет избыточного давления в полостях амортизаторов 2 обеспечиваются всплытие платформы 1 - пневматическая подвеска платформы и грубая выставка плоскости платформы в горизонтальную плоскость. Давление в каждом амортизаторе 2 определяется конкретным распределением масс платформы и нагрузки относительно амортизаторов, а шток 8 находится в среднем положении. При включении системы угловой стабилизации датчиком горизонта 4 вырабатывается сигнал, пропорциональный углу наклона платформы. В усилителе-преобразователе 5 в соответствии с указанным сигналом вырабатывается сигнал управления электродвигателем 6. Вращение вала электродвигателя через редуктор 10 и кинематическую пару винт-гайка вызывает поступательное перемещение штока 8, причем направляющее устройство (палец 13 в пазу 12) препятствует возникновению нежелательного вращательного движения штока. Перемещаясь относительно основания, шток 8 перемещает встречно направленные поршни пневматических камер 7, вызывая изменение их объемов. При этом изменяются и давления в соответствующих полостях пневматических амортизаторов 2: в одном из амортизаторов давление увеличивается, в то время как в другом - уменьшается. Возникающий при этом момент сил, приложенный к платформе, вызывает уменьшение угла наклона платформы. Изменение положения центра масс оборудования на платформе вызывает перераспределение нагрузок на пневмоамортизаторах 2, которое парируется пневмообъемным регулированием давления в пневмоамортизаторах. Таким образом, обеспечивается угловая стабилизация платформы относительно плоскости горизонта. Вибрации основания 1 гасятся пневматическими амортизаторами 2 за счет небольшой жесткости амортизаторов и рассеивания энергии колебаний при перетекании воздуха через дроссель 3 из полости амортизатора в соответствующую полость пневматической камеры 7. При этом пневматические камеры 7 выполняют функции демпферных камер. Технико-экономические преимущества заявляемого виброзащитного устройства с угловой стабилизацией по сравнению с базовым объектом, характеризующим уровень техники и совпадающим в данном случае с прототипом: расширение диапазона угловой стабилизации платформы в результате увеличения допустимого хода (так называемых углов прокачки) платформы; повышение точности угловой стабилизации платформы в результате того, что момент стабилизации к платформе прикладывается через пневматические амортизаторы, которые благодаря присущим им физическим свойствам являются естественными фильтрами высоких частот и обеспечивают снижение высокочастотных угловых вибраций платформы; снижение мощности привода при одновременном увеличении допустимых нагрузок, действующих на платформу, так как в предлагаемом устройстве силы, приложенные к встречно направленным поршням пневматических камер, противоположно направлены и в значительной мере взаимно уравновешиваются на жестком штоке, а электропривод отрабатывает только разностную нагрузку; снижение энергопотребления и увеличение надежности благодаря выполнению кинематической передачи необратимой, так как это свойство обеспечивает ненагруженный режим работы электродвигателя привода в периоды стабилизированного (горизонтального) положения платформы даже в условиях неравномерного распределения нагрузки на опоры (при ненулевой разностной нагрузке на штоке).Класс F16F15/04 с использованием эластичных средств
система виброизоляции для судовых двигателей - патент 2526979 (27.08.2014) | |
система виброизоляции для судовых энергетических установок - патент 2526977 (27.08.2014) | |
малошумная судовая каюта - патент 2523638 (20.07.2014) | |
акустическая отделка судовой каюты - патент 2523636 (20.07.2014) | |
виброизолятор комбинированный с сетчатым демпфером - патент 2517430 (27.05.2014) | |
виброизолирующая система для станков - патент 2517427 (27.05.2014) | |
виброизолированный помост оператора - патент 2514942 (10.05.2014) | |
сиденье оператора самоходной техники - патент 2507090 (20.02.2014) | |
виброизолятор судовой каюты - патент 2495296 (10.10.2013) | |
штучный звукопоглотитель - патент 2495202 (10.10.2013) |