устройство для измерения коэффициента отражения акустических сигналов
Классы МПК: | G01N29/02 анализ жидкостей |
Автор(ы): | Гаврилов А.М. |
Патентообладатель(и): | Таганрогский радиотехнический институт |
Приоритеты: |
подача заявки:
1991-07-08 публикация патента:
30.09.1994 |
Изобретение относится к устройствам для исследования акустических характеристик материалов и предназначено для определения комплексного коэффициента отражения акустических сигналов от поверхности материалов, помещенных в акустически прозрачные среды. Устройство может быть использовано в гидроакустике, геофизике, материаловедении. Технический результат изобретения - повышение точности измерения модуля и фазы коэффициента отражения. Устройство содержит генератор амплитудно-модулированных радиоимпульсов, акустический излучатель, гидроакустическую трубу, последовательно соединенные акустический приемник, первый избирательный фильтр, амплитудный детектор, фильтр нижних частот, фазометр и индикатор, подключенный к акустическому приемнику второй избирательный фильтр, нагруженный на измеритель амплитуды и на второй вход фазометра, последовательно соединенные аналоговый ключ, подключенный сигнальным и управляющим входами к низкочастотному и импульсному выходам генератора радиоимпульсов, усилитель и сумматор, второй вход которого соединен с высокочастотным выходом генератора радиоимпульсов, нагруженный на акустический излучатель. 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ АКУСТИЧЕСКИХ СИГНАЛОВ, содержащее генератор амплитудно-модулированных радиоимпульсов, акустический излучатель, гидроакустическую трубу, последовательно соединенные акустический приемник, первый избирательный фильтр, амплитудный детектор, фильтр нижних частот, фазометр и индикатор, второй избирательный фильтр, включенный между выходом акустического приемника и вторым входом фазометра, и подключенный к выходу второго избирательного фильтра измеритель амплитуды, отличающееся тем, что оно снабжено последовательно соединенными аналоговым ключом, подключенным сигнальным и управляющим входами соответственно к низкочастотному и импульсному выходам генератора амплитудно-модулированных радиоимпульсов, усилителем и сумматором, второй вход которого связан с высокочастотным выходом генератора радиоимпульсов, а выход - с акустическим излучателем.Описание изобретения к патенту
Изобретение относится к устройствам для исследования акустических характеристик материалов и предназначено для определения комплексного коэффициента отражения акустических сигналов от поверхности материалов, помещенных в акустически прозрачные среды. Устройство может быть использовано в гидроакустике, геофизике и материаловедении. Известно устройство для измерения коэффициента отражения образцов и гидроакустической трубе, в котором значения максимумов и минимумов звукового давления соответственно в пучностях и узлах стоячей волны, необходимые для определения модуля и фазы коэффициента отражения, находятся, не прибегая к перемещению приемника, вдоль оси измерительной трубы. Для этого, при неизменном месторасположении приемника изменяется значение частоты возбуждения излучающего преобразователя. Устройство состоит из генератора радиоимпульсов с изменяемой частотой, соединенного с акустическим преобразователем, находящимся в акустическом контакте со средой, помещенной в измерительной трубе, на другом конце которой перпендикулярно оси трубы расположена плоская поверхность исследуемого материала. Между преобразователем и материалом на оси трубы расположен приемник акустических волн, соединенный через фильтр с измерителем амплитуды [1]. Недостатком аналога является низкая точность измерений комплексного коэффициента отражения в стоячей волне. Из-за конечных размеров приемника невозможно точно измерить звуковое давление в точке звукового поля (в узле или пучности) в условиях большого градиента амплитуд в поле стоячей волны. Это снижает достоверность получаемой величины модуля коэффициента отражения. Поскольку протяженность областей, расположенных между узлами, сокращается пропорционально росту частоты, то точность измерения звукового давления в узле и пучности приемником конечных размеров уменьшается с ростом частоты. Поэтому погрешность метода измерения коэффициента отражения в стоячей волне частотно зависима и растет с увеличением частоты. Вторым недостатком аналога является необходимость привязки к местоположению отражающей границы исследуемого материала. В тех случаях, когда физическая граница раздела между образцом и средой не совпадает с акустической границей, результаты измерения фазы коэффициента отражения методом стоячих волн становятся ошибочными. Такая ситуация возникает при исследовании образцов из пористых материалов, в поры которых проникает вода и тем самым "отодвигает" вглубь образца акустическую границу, т.е. границу, от которой отражается акустическая волна. Эта закономерность проявляется и в ряде других случаев: у образцов с шероховатой поверхностью, у материалов с малым градиентом волнового сопротивления на протяжении длины волны (жидкие иловые отложения на дне озер, морей), у образцов, имеющих одинаковые со средой волновые сопротивления в месте их контакта и др. В качестве прототипа выбрано устройство для измерения коэффициента отражения акустических сигналов, в котором исключены недостатки метода определения коэффициента отражения по параметрам стоячей волны [2]. Модуль коэффициента отражения находится из отношения амплитуд отраженной и падающей волн, а фаза - как разность фаз между нелинейно генерируемой в среде распространения низкочастотной волной, так называемой волной разностной частоты (ВРЧ), и огибающей высокочастотной амплитудно-модулированной (АМ) волны, так называемой волны накачки параметрической антенны (ПА). Устройство-прототип содержит генератор амплитудно-модулированных радиоимпульсов, соединенный с акустическим излучателем, гидроакустическую трубу, акустический приемник и блок регистрации, в который входят два фильтра, входы которых соединены с выходом акустического приемника, к выходу одного из фильтров подключены измеритель амплитуды и один из входов фазометра, к выходу которого подключен индикатор, второй фильтр через последовательно соединенные амплитудный детектор, и фильтр нижних частот соединен с вторым входом фазометра. Недостатком прототипа является низкая точность измерения модуля и фазы коэффициента отражения, обусловленная влиянием деструктивной интерференции двух низкочастотных волн на участке, отражающий образец/приемник. Техническим результатом изобретения является повышение точности измерения модуля и фазы коэффициента отражения. Это достигается тем, что в устройство, содержащее генератор амплитудно-модулированных радиоимпульсов, акустический излучатель, гидроакустическую трубу, последовательно соединенные акустический приемник, первый избирательный фильтр, амплитудный детектор, фильтр нижних частот, фазометр и индикатор, подключенный к акустическому приемнику, второй избирательный фильтр, нагруженный на измеритель амплитуды и на второй вход фазометра, введены последовательно соединенные аналоговый ключ, подключенный сигнальным и управляющим входами к низкочастотному и импульсным выходам генератора радиоимпульсов, усилитель и сумматор, второй вход которого соединен с высокочастотным выходом генератора радиоимпульсов, нагруженный на акустический излучатель. Устранить деструктивную интерференцию двух низкочастотных волн на участке образец/приемник можно посредством перехода от нелинейного метода генерации низкочастотной волны, частота которой совпадает с частотой амплитудной модуляции высокочастотной волны, к обычному (линейному) излучению одновременно двух радиоимпульсов - одного с низкочастотным синусоидальным заполнением и другого с амплитудно-модулированным высокочастотным заполнением. Излучение низкочастотного и АМ радиоимпульсов осуществляется одним акустическим излучателем. Чтобы влияние нелинейно генерируемой в среде распространения низкочастотной волны на величину измеряемого коэффициента отражения было пренебрежимо мало, излучатель создает в трубе низкочастотную волну, амплитуда которой в 100-1000 раз превышает амплитуду нелинейно генерируемой ВРЧ. Обеспечить указанное соотношение амплитуд линейно излучаемой и нелинейно генерируемой низкочастотных волн не представляет труда, если учесть, что коэффициент нелинейного преобразования энергии АМ волны в амплитуду ВРЧ не превышает 1%. На фиг.1 приведена структурная схема устройства; на фиг.2 - эпюры напряжений, поясняющие работу устройства; на фиг.3 - структурная схема генератора радиоимпульсов. Устройство для измерения коэффициента отражения акустических сигналов состоит из генератора 1 амплитудно-модулированых радиоимпульсов, высокочастотный выход которого соединен с сумматором 2, нагруженным на акустический излучатель 3. Низкочастотный и импульсный выходы генератора 1 соединены с сигнальным и управляющим входами аналогового ключа 4, соединенного через усилитель 5 с вторым входом сумматора 2. Кроме того устройство состоит из гидроакустической трубы 6, заполненной средой 7 распространения и сопряженной на одном конце с образцом 8 исследуемого материала, акустического приемника 9, нагруженного на входы двух избирательных фильтров 10 и 11, последовательно соединенных амплитудного детектора 12, фильтра 13 нижних частот, фазометра 14, второй вход которого соединен с выходом фильтра 11, и индикатора 15, подключенных к выходу фильтра 10, измерителя 16 амплитуды, соединенного с выходом фильтра 11. Схема работает следующим образом. Генератор 1 вырабатывает на высокочастотном выходе амплитудно-модулированные (АМ) радиоимпульсы U1 (частота заполнения












Класс G01N29/02 анализ жидкостей