способ определения расхода тепла в тепловой сети
Классы МПК: | G01F9/00 Измерение расхода жидкости путем сравнения с другой переменной величиной, например измерение расхода жидкого топлива для двигателей G01K17/06 измерение количества тепла, передаваемого жидкими или газообразными веществами, например в тепловых устройствах |
Автор(ы): | Кричке В.О. |
Патентообладатель(и): | Самарский архитектурно-строительный институт |
Приоритеты: |
подача заявки:
1990-11-29 публикация патента:
30.10.1994 |
Использование: приборостроение, для измерения расхода тепла в тепловых сетях, содержащих центробежные электронасосы. Сущность изобретения: для повышения точности и упрощения измерения расхода тепла измеряют одновременно активную мощность, потребляемую электродвигателем привода насоса, давление на нагнетании и всасе насоса, температуру теплоносителя на подающем и обратном трубопроводах тепловой сети, вычисляют мощность, действующую на валу насоса, и давление на нагнетании, развиваемое собственно насосом, определяют расчетный коэффициент подачи путем давления на мощность и вычитания результата из постоянного числа, равного отношению давления к мощности при нулевой подаче, строят характеристику, отражающую зависимость расчетного коэффициента от подачи, и по ней определяют производительность насоса и умножают на разность температур в подающем и обратном трубопроводах тепловой сети. 5 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5
Формула изобретения
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА ТЕПЛА В ТЕПЛОВОЙ СЕТИ, заключающийся в измерении давления на нагнетании центробежного электронасоса, разности температур в прямом и обратных трубопроводах тепловой сети, отличающийся тем, что, с целью повышения точности, одновременно измеряют активную мощность, потребляемую электронасосом, и давление на всасе центробежного насоса, при этом определяют расчетный коэффициент подачи центробежного насоса и строят градуировочную характеристику, по которой определяют производительность центробежного насоса с учетом разности температур в прямом и обратном трубопроводах тепловой сети.Описание изобретения к патенту
Изобретение относится к приборостроению и может быть использовано для измерения расхода тепла в тепловых сетях, содержащих центробежные электронасосы. Известны способы измерения расхода тепла с помощью механических и электрических тепломеров, содержащих счетчики количества жидкости и термометры в подающем и обратном трубопроводах тепловой сети (см. Скрицкий Л.Г. Основы автоматики и автоматизации систем теплогазоснабжения и вентиляции. М. : 1968, с. 43-44 и Автоматические приборы, регуляторы и вычислительные системы. Справочное пособие. Изд. 3-е, перераб. и доп. Под ред. Б.Д.Кашарского. Л.: Машиностроение, 1976, с. 61). Однако данный способ измерения расхода тепла требует установки измерителей расхода, чувствительные элементы которых находятся в измеряемом потоке и непрерывно вращаются. Максимальный предел измерения расхода до 300 м3/ч, что не всегда удовлетворяет запросам производства. Надежность таких тепломеров недостаточна. Известен также способ расчета расхода тепла по империческим формулам. Недостатком этого способа является низкая точность из-за наличия исходных данных, получаемых приближенным путем. Цель изобретения - повышение точности замера расхода тепла, приборный учет накопленного расхода тепла, ликвидация существующих громоздких и сложных устройств по измерению расхода тепла, уменьшение эксплуатационных расходов. Цель достигается тем, что в тепловой сети, содержащей центробежный электронасос, измеряют одновременно активную мощность, потребляемую электродвигателем привода насоса, давление на выкиде и приеме насоса, температуру теплоносителя на подающем и обратном трубопроводах тепловой сети, вычисляют мощность, действующую на валу насоса, и давление на выкиде, развиваемое собственно насосом, определяют расчетный коэффициент подачи путем деления давления на мощность и вычитания результата из постоянного числа, равного отношению давления к мощности при нулевой подаче, строят характеристику, отражающую зависимость расчетного коэффициента подачи, и по ней определяют производительность насоса и умножают ее на разность температур в подающем и обратном трубопроводах тепловой сети. На фиг. 1 представлена структурная схема участка тепловой сети; на фиг. 2 представлена характеристика центробежного насоса СЭ 800-100, где вместо напора в метрах принято давление, а также предлагаемая новая характеристика насоса; на фиг. 3 - характеристики центробежного насоса типа СЭ 1250-140 при различном значении диаметра рабочих колес, а также новая энергетическая характеристика; на фиг. 4 - характеристики другого типа насоса ЦНС-180 при различном диаметре рабочих колес и новая энергетическая характеристика; на фиг. 5 представлена структурная схема, поясняющая принцип измерения расхода тепла в тепловой сети. Тепловая сеть (фиг. 1) состоит из источника 1 тепла, подающего трубопровода 2, потребителя 3 тепла, обратного трубопровода 4, в котором устанавливается центробежный насос 5 с электродвигателем 6. Для измерения количества тепла, потребляемого потребителем, измеряется разность температур на прямом и обратном трубопроводах манометрами 7, 8, разность давлений на выходе и приеме насоса манометрами 9, 10, а также активная мощность, потребляемая приводным электродвигателем насоса. По разности давлений и мощности рассчитывают расход теплоносителя и умножают его на разность температур устройством 11. Тогда количество тепла, отпускаемое потребителем, будет равноG = C Qdt , где G - количество тепла;
С - теплоемкость воды;
Q - расход теплоносителя на обратном трубопроводе;
- разность температур в прямом и обратном трубопроводах тепловой сети;
t1-t2 - промежуток времени, в течение которого измерялся расход тепла. Наиболее сложным является измерение расхода теплоносителя, особенно при больших диаметрах трубопроводов и больших расходах. По предлагаемому способу расход жидкости производится без установки специальных приборов в поток жидкости, а непосредственно путем анализа параметров самой насосной станции. Насос 5 служит для подачи жидкости. Основными параметрами центробежных электронасосов являются: подачи и развиваемый напор Н в мм вод.ст. Напор равен максимальной высоте, на которую может подняться жидкость (вода). Напор и подача - величины взаимосвязанные: чем выше развиваемый данным насосом напор, тем ниже его производительность. Поскольку все типовые характеристики насоса сняты на воде с плотностью 100 кг/м3, то вместо напора в метрах будем в дальнейшем пользоваться давлением в МПа, из расчета 1 МПа равен 100 м напора. Типичная зависимость развиваемого давления от подачи показана на фиг. 2. Для измерения расхода данным способом предлагается ввести в число паспортных характеристик насоса новую характеристику М - Q (фиг. 2-4). Эта характеристика отражает изменение значения потребляемой мощности на создание единицы давления, которую обозначим через М, а соответствующую характеристику через М - Q, которая для данного значения равна
M = A - K , где N - мощность на валу насоса;
Р - разность давлений на приеме и выкиде насоса. Значение характеристик М - Q для данного типа насоса независимо от величины подачи и остается неизменным. Следовательно, если знать характер изменения мощности на валу насоса при каком-то давлении, то можно судить и о производительности насоса. Для измерения расхода тепла по предлагаемому способу (фиг. 5) необходимо провести следующие измерения и вычисления. Для этого на участке тепловой сети с электроцентробежным насосом измеряются: активная мощность, потребляемая электродвигателем привода насоса Р, кВт; ток в питающей сети электродвигателя привода насоса I, А; давление на выкиде насоса Рв, МПа; давление на приеме насоса Рп, МПа; температура в подающем трубопроводе сети Тп, оС; температура в обратном трубопроводе тепловой сети То, оС. На типовой характеристике насоса (фиг. 2) берется отношение значения подачи для определенного давления к мощности на валу насоса и строится соответствующая зависимость М - Q. Для удобства вычислений эта зависимость приводится к началу координат, как показано на фиг. 2 -4. Так, для характеристики, показанной на фиг. 2, точка М для определенного значения мощности и давления определяется выражением
M = 9,3 - 103
Для характеристики, показанной на фиг. 3, это выражение равно
M = 9,64 - 2 102 а для характеристики, показанной на фиг. 4, M = 27 - 103
Для вычисления мощности, действующей на валу насоса, измеренное значение активной мощности умножается на КПД электродвигателя э, которое находится из рабочей характеристики электродвигателя по известному рабочему току I. При отсутствии ваттметра мощность на валу насоса может быть определена расчетным путем по формуле
N = 1,73U.Icos э. Здесь э, соs также находится из рабочей характеристики электродвигателя в зависимости от значения рабочего тока. Давление на выкиде насоса, которое непосредственно создается насосом, определяется в общем случае путем вычитания из действующего давления Рв на выкиде насоса той части давления на приеме насоса, которая превышает номинальное паспортное давление на приеме насоса:
Р = Рв - (Рп - Рн), где Р - результирующее давление;
Рв - давление на выкиде насоса;
Рп - давление на приеме насоса;
Рн - номинальное давление на приеме насоса. По полученным значениям мощности и давлению вычисляется энергетический коэффициент М
M = A - K , где А - постоянный коэффициент для данной характеристики;
К - масштабный коэффициент;
N - мощность на валу насоса, кВт;
Р - результирующее давление на выкиде насоса, МПа. Далее определяют разность температур на подающем и обратном трубопроводах тепловой сети
= Тп - То
Обозначим теплоемкость перекачиваемой жидкости через С, тогда расход тепла будет равен
G = C Q. Расход тепла за промежуток времени от t1 до t2 равен
G = C Qdt Рассмотрим пример определения расхода тепла для сети с насосом СЭ-800-100, характеристика которого показана на фиг. 2. Исходные данные: активная мощность, потребляемая электродвигателем привода насоса, Р = 240 кВт; рабочий ток электродвигателя I = 445 А; из характеристики находим, что КПД электродвигателя равен э = 0,82; давление на выкиде насоса Рв = 1,6 МПа; давление на приеме насоса Рп = 0,45 МПа; температура на подающем трубопроводе Тп = 176оС; температура на обратном трубопроводе То = 78оС; номинальное давление на приеме насоса Рн = 0,1 МПа. Расчет: находим мощность, действующую на валу насоса
N = Р э = 240 х 0,82 = 196 кВт; находим давление, которое создает насос на выходе
Р = Рв - (Рп - Рн) = 1,6 - (0,45 - 0,1) =
=1,6 - 0,35 = 1,25 МПа; определяем энергетический коэффициент
M = 9,3 - 1000 = 2,93
По характеристике М - Q (фиг. 2) находим: точку А = 2,93; точку В = пересечение характеристики М; точку С = 815 м3/ч = 815.с= = 1.815 = 815 кг/ч. Находим разность температур в подающем и обратном трубопроводах = Тп - То = = 176 - 78 = 98оС; принимаем теплоемкость воды равной единице С = 1, находим расход тепла за 1 ч
G = c. Q = 1.98.815 = 79870 ккал/ч или 79870.4,19.103 = 33,465 кДж/ч.
Класс G01F9/00 Измерение расхода жидкости путем сравнения с другой переменной величиной, например измерение расхода жидкого топлива для двигателей
Класс G01K17/06 измерение количества тепла, передаваемого жидкими или газообразными веществами, например в тепловых устройствах