фотодетектор на основе полупроводниковой структуры с квантовыми ямами
Классы МПК: | H01L31/101 чувствительные к инфракрасному, видимому или ультрафиолетовому излучению |
Автор(ы): | Кадушкин В.И. |
Патентообладатель(и): | Научно-исследовательский технологический институт |
Приоритеты: |
подача заявки:
1992-02-28 публикация патента:
30.10.1994 |
Использование: изобретение относится к оптоэлектронике и может быть использовано для создания фотодетекторов на основе эпитаксиальных структур GaAs/AlxGa1-xAs , чувствительных к ИК-излучению. Сущность изобретения: в фотодетекторе на основе полупроводниковой структуры с квантовыми ямами, включающем подложку из полуизолирующего GaAs с буферным слоем 1 - GaAs, первый контактный слой N - GaAs, систему чередующихся слоев AlxGa1-xAs и GaAs, причем в один из материалов системы чередующихся слоев введена примесь кремния до уровня легирования 21018 см-3, и второй контактный слой n - GaAs, примесь кремния введена в слой AlxGa1-xAs в виде моноатомного слоя, расположенного на расстоянии, не большем Дебаевской длины экранирования от одной из границ раздела чередующихся слоев. 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
ФОТОДЕТЕКТОР НА ОСНОВЕ ПОЛУПРОВОДНИКОВОЙ СТРУКТУРЫ С КВАНТОВЫМИ ЯМАМИ, включающий подложку из полуизолирующего GaAs с буферным слоем i - GaAs, первый контактный слой n - GaAs, систему чередующихся слоев AlxGa1-xAs и GaAs, причем в один из материалов системы чередующихся слоев введена примесь кремния до уровня легирования 2 1018 см-3 и второй контактный слой n - GaAs, отличающийся тем, что примесь кремния введена в слой AlxGa1-xAs в виде моноатомного слоя, расположенного на расстоянии не большем Дебаевской длины экранирования от одной из границ раздела чередующихся слоев.Описание изобретения к патенту
Изобретение относится к оптоэлектронике и может быть использовано для создания высокоэффективных фотодетекторов на основе эпитаксиальных структур GaAs/AlxGa1-xAs, чувствительных к ИК-излучению в окнах прозрачности атмосферы в диапазоне длин волн =4-14 мкм. Известны фотодетекторы, чувствительные в среднем диапазоне ИК-излучения и обладающие селективной (или близкой к ней) спектральной характеристикой. Так, например, фотодетекторы на основе тройных соединений СdхHg1-xTe обладают максимум чувствительности на =4,5 мкм, фотодетекторы на основе InSb - на =3-5 мкм [1]. Ближайшим техническим решением к заявленному является фотодетектор на основе полупроводниковой структуры с квантовыми ямами, включающий подложку из полуизолирующего GaAs с буферным слоем i-GaAs, первый контактный слой n-GaAs, систему чередующихся слоев AlxGa1-xAs и GaAs, причем в один из материалов системы чередующихся слоев введена примесь кремния до уровня легирования 2 1018 см-3 и второй контактный слой - n-GaAs [2]. Мольная доля х Al в тройном соединении постоянна и равна 0,31. Уровень легирования Si в GaAs составляет 2 1018 см-3. Сверхрешетка содержит 50 слоев каждого соединения (периодичность решетки равна 50). Слои GaAs разделены широкозонными слоями AlxGa1-xAs. Электронные состояния n в GaAs локализованы в квантовых ямах. Уровни энергии Si в соседних слоях GaAs не перекрываются из-за большой толщины слоя AlxGa1-xAs. На границе слоев GaAs и AlxGa1-xAs возникает гетеропереход. Система чередующихся слоев с большой разницей между их толщинами может быть охарактеризована как "структура с разнесенной сверхрешеткой" в отличие от обычной сверхрешетки, где соседние слои имеют соизмеримую толщину. Известный фотодетектор работает следующим образом. Излучение с энергией = hw, равной величине энергетического зазора между уровнями En в GaAs и зоной свободных состояний, обеспечивает переход I электронов в эту зону, и при наличии внешнего тянущего поля Е (вызывающего наклон зонной энергетической диаграммы) возникает эффект фотопроводимости, величина G которого определяется выражениемG= n l V_ , где n - концентрация фотовозбужденных электронов; V_ - скорость; e - заряд электрона. Известный фотодетектор имеет следующие недостатки. В состоянии термодинамического равновесия электроны перераспределяются между примесными уровнями кремния <<- Si ->> и уровнем n в потенциальной яме в GaAs. Термическое возбуждение электронов с уровня <<- Si ->> на уровень n (процесс II) и их обратная рекомбинация (процесс III) приводят к тому, что уровень n оказывается заселенным не полностью. Последнее обстоятельство ограничивает квантовый выход и уменьшает эффект фотопроводимости, так как не все электроны возбуждаются квантами hw (процесс I), в свободную зону (на фиг. 3 заштрихована). Другим недостатком известного фотодетектора является наличие темнового тока (имеющего прыжковый характер) по примесным состояниям (процесс III). Цель изобретения - повышение квантового выхода и снижение темнового тока. Цель достигается тем, что в фотодетекторе на основе полупроводниковой структуры с квантовыми ямами, включающем подложку из полуизолирующего GaAs с буферным слоем i-GaAs, первый контактный слой n-GaAs, систему чередующихся слоев AlxGa1-xAs и GaAs, причем в один из материалов системы чередующихся слоев введена примесь кремния до уровня легирования 2 1018 см-3, и второй контактный слой n-GaAs, примесь кремния введена в слой AlxGa1-xAs в виде моноатомного слоя, расположенного на расстоянии, не большем Дебаевской длины экранирования от одной из границ раздела чередующихся слоев. Сущность изобретения заключается в следующем. Выполнение в квантовом барьерном слое из широкозонного материала -слоя легирующей примеси приводит к тому, что электронам из потенциальной ямы (Si) становится энергетически выгодно перейти на уровень n в квантовой яме слоя GaAs. Обратный процесс из-за значительного энергетического барьера затруднен. В результате увеличивается заселенность уровня 1 и, соответственно, квантовый выход. Поскольку в области локализации электронов отсутствуют примесные состояния, предлагаемый фотодетектор характеризуется отсутствием компоненты темнового тока. Моноатомные слои легирующей примеси (-слои) располагаются на расстоянии L Lэкр, где Lэкр - дебаевская длина экранирования в AlxGa1-xAs. Это позволяет обеспечить беспрепятственный переход электронов с уровней в -квантовой яме в квантовую яму в слое GaAs. На фиг. 1 схематически изображен предлагаемый фотодетектор, на фиг. 2, 3 представлены зонные диаграммы соответственно заявляемого фотодетектора и прототипа. Фотодетектор представляет собой подложку из полуизолирующего GaAs 1, на которой сформированы буферный слой i-GaAs 2, первый контактный слой n-GaAs 3, сверхрешетка, состоящая из групп 4 чередующихся слоев -легированного кремнием i-AlxGa1-xAs 5 и нелегированного i-GaAs 6, и второй контактный слой n-GaAs 7. Мольная доля х Al в тройном соединении выбрана равной 0,28. Фотодетектор выращивали методом молекулярно-лучевой эпитаксии. В ростовую камеру установки молекулярно-лучевой эпитаксии помещали подложку полуизолирующего GaAs. Затем на ее поверхности, очищенной от загрязнений (C,O2), формировали буферный слой i-GaAs толщиной 1 мкм. Поверх буферного слоя наращивали первый контактный слой n-GaAs толщиной 1 мкм. Далее формировали сверхрешетку: слой i-AlxGa1-xAs с х=0,28 толщиной 300 и слой i-GaAs толщиной 55 . В слое тройного соединения на расстоянии 50 от границы раздела слоев формировался моноатомный -слой легирующей примеси - кремния с концентрацией 2 1018 см-1. Операции повторялись до выращивания не менее 10 групп слоев. На последнем слое сверхрешетки формировался второй (верхний) контактный слой n-GaAs толщиной 200 . Толщины слоев i-GaAs и i-AlxGa1-xAs в сверхрешетке выбирали так, чтобы они значительно различались по толщине. Это обеспечивает существование в GaAs квантовых ям для электронов и подключает перекрытие волновых функций электронов в соседних квантовых ямах. Сочетание мольной доли х в тройном соединении, равной 0,28, и толщины квантовой ямы GaAs, равной 55 , обеспечивает чувствительность фотоприемника в диапазоне 8-12 мкм. Фотодетектор работает следующим образом. В состоянии термодинамического равновесия электроны с энергетических уровней в -слое кремния в слое i-AlxGa1-xAs переходят на наинизший уровень n в слое i-GaAs. При направлении внешнего излучения с энергией h, достаточной для возбуждения доли n этих электронов в свободное состояние (непрерывный континуум энергий), в сверхрешетке создается проводящее состояние. При приложении внешнего напряжения между первым и вторым контактными слоями в фотоприемнике возникает электрическое поле Е, приводящее к наклону энергетической диаграммы и возникновению тока jz= n e(V_), где V_= Ez. При этом паразитным фактором выступает только рекомбинация свободных электронов на уровни энергии в -слое и квантовой яме n. Темновой ток ослабляется, с одной стороны, эффектом разнесения квантовых ям за счет увеличения барьера, с другой стороны, за счет исключения прыжковой проводимости по примесным состояниям между квантовыми ямами. Чрезвычайная малость времен рекомбинации на уровень обуславливает постоянную заселенность уровней n, что, в конечном итоге, приводит к увеличению квантового выхода. Использование изобретения позволит повысить обнаружительную способность и соотношение сигнал/шум фотоприемных устройств.
Класс H01L31/101 чувствительные к инфракрасному, видимому или ультрафиолетовому излучению