способ контроля параметров трубы при многоколенной гибке

Классы МПК:B21D7/12 с программным управлением 
Автор(ы):,
Патентообладатель(и):Вашковец Людмила Константиновна,
Вашковец Валерий Владимирович
Приоритеты:
подача заявки:
1991-02-06
публикация патента:

Использование: обработка металлов давлением, в частности контроль процесса гибки труб. Сущность изобретения: способ включает определение измерительной системой длин и пространственного положения в системе прямоугольных координат осей прямых участков колен трубы при ее гибке по шаблону и расчет параметров каждого из колен трубы. Расчет параметров гибки последующих колен трубы производят с учетом неточности гибки предыдущих. Параметры гибки определяют измерительной системой по двум излучателям сигналов, расположенным по прямой, совпадающей с осью начального прямого участка трубы или параллельной ей. Одну из осей координат совмещают с осью подачи трубы, другую направляют параллельно оси гибочного шаблона, а начало системы координат устанавливают в точке касания оси трубы и среднего радиуса гибочного шаблона. 1 з.п. ф-лы, 8 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8

Формула изобретения

1. СПОСОБ КОНТРОЛЯ ПАРАМЕТРОВ ТРУБЫ ПРИ МНОГОКОЛЕННОЙ ГИБКЕ, включающий определение измерительной системой длин и пространственного положения в системе координат осей прямых участков колен трубы при гибке ее по шаблону и расчет параметров каждого из колен трубы, отличающийся тем, что, с целью повышения точности, расчет параметров гибки последующих колен трубы производят с учетом неточности гибки предыдущих, при этом параметры каждого отогнутого колена и трубы в целом определяют посредством измерительной системы непосредственно в процессе гибки по двум излучателям сигналов, расположенным на прямой, совпадающей с осью начального прямого участка трубы или параллельно ей, а измерительную систему настраивают по указанным излучателям сигналов перед гибкой первого колена трубы.

2. Способ по п. 1, отличающийся тем, что систему координат принимают прямоугольной, при этом одну из осей координат совмещают с осью подачи трубы, другую направляют параллельно оси гибочного шаблона, а начало системы координат устанавливают в точке касания оси трубы и среднего радиуса гибочного шаблона.

Описание изобретения к патенту

Изобретение относится к контролю параметров трубы при обработке металлов давлением и может быть использовано для точной гибки труб в судостроении, судоремонте, самолетостроении и других отраслях.

Известен способ контроля при гибке трубы угла пружинения с определением его отклонения от допустимого и последующей догибкой трубы на величину превышения допуска при повторном прижиме трубы к гибочному шаблону (авт.св. N 517356, кл. B 21 D 7/024).

Наиболее близким по технической сущности и достигаемому результату к изобретению является способ контроля параметров трубы [1], заключающийся в том, что копию многоколенной трубы изготавливают, выполняя следующие операции.

Снятие с модели серии замеров, определяющих ось для каждой из прямолинейных участков модели, при этом ось предыдущего прямолинейного участка в основном не пересекает ось последующего участка, а проходит в непосредственной близости от нее, разработку программы для ЭВМ, причем полученные замеры являются данными для расчета теоретической точки пересечения поименованных осей в районе каждого погиба, а также для введения в ЭВМ информации, базирующейся на данных о фиктивных осях, соединяющих названные теоретические точки пересечения, и представленной длинами каждой из поименованных прямолинейных частей и данными угловых размеров каждой из них относительно смежной части или частей; использование ЭВМ для подачи команд исполнительным механизмом станка в соответствии с программой гибки многоколенной трубы.

Недостатками способа контроля параметров многоколенной трубы являются высокая себестоимость и трудоемкость изготовления и сборки трубопроводов сложной конфигурации.

Целью изобретения является повышение точности многоколенной гибки трубы.

Это достигается тем, что способ контроля параметров трубы при многоколенной гибке, включающий определение измерительной системы длин и пространственного положения в системе координат осей прямых участков колен трубы, расчет параметров колен трубы, включает также операцию расчета параметров гибки последующих колен трубы с учетом неточности гибки предыдущих, при этом определение параметров каждого отогнутого колена и в целом трубы осуществляется измерительной системой непосредственно в процессе гибки по двум излучателям сигналов, расположенным на одной прямой, совпадающей с осью начального прямого участка трубы или параллельной ей, а измерительная система настраивается по указанным двум излучателям сигналов только перед гибкой первого колена трубы.

Систему координат принимают прямоугольной, при этом одну из осей координат совмещают с осью подачи трубы, другие направляют параллельно оси гибкого шаблона, а начало координат устанавливают в точке касания оси трубы и среднего радиуса гибочного шаблона.

На фиг.1 показана измерительная система для контроля параметров погиба, определяющих пространственное положение начального прямого участка трубы, точечных излучателей и приемников сигналов; на фиг.2 - контролируемые параметры гибки и схема положения начального прямого участка трубы, снабженного точечными излучателями, перед гибкой, после гибки и после отвода прижима от трубы после выполнения первого гиба; на фиг.3 - угол между плоскостями погибов, контролируемый в случае, когда погибы находятся в разных плоскостях; на фиг. 4 - схема положения начального прямого участка, снабженного точечными излучателями, при выполнении i-ого погиба; на фиг.5 - смещение рисок по отношению к началу и концу погиба; на фиг.6 - схема расчета величины способ контроля параметров трубы при многоколенной гибке, патент № 2025167lн; на фиг.7 - эскиз трубы для контрольного расчета; на фиг.8 - схема расчета величин способ контроля параметров трубы при многоколенной гибке, патент № 2025167lк и Rпог.

Способ осуществляется следующим образом.

Перед началом гибки трубы 1 производят настройку относительного гибочного шаблона 2 измерительной системы, состоящей из штанги 3 с излучателями 4 и 5 и двух измерительных стоек, несущих жесткие треугольные рамки 6 и 7, содержащие в углах приемники (излучатели) 8-13 (фиг.1).

Настройка измерительной системы производится следующим образом.

Штанга 3 с излучателями 4 и 5 сигналов через вкладыш устанавливается в рабочем ручье гибочного шаблона и ползуна трубогибочного станка таким образом, чтобы излучатель 4 совместился с точкой 0 в торцовой плоскости ползуна, являющейся точкой касания среднего радиуса гибочного шаблона и оси обрабатываемой трубы. В точку 0 помещается начало декартовой системы отсчета, при этом ось Х совмещена с осью начального прямолинейного участка трубы 1 перед началом гибки, т.е. осью подачи трубы.

Измерительные стойки с рамками 6 и 7 размещаются произвольно вне рабочей зоны с данной трубой, но так, чтобы приемники (излучатели) каждой из рамок имели возможность принять сигналы излучателей 4 и 5 в любом пространственном положении начального прямолинейного участка гнутой трубы, несущей штангу 3 с излучателями 4 и 5, а также взаимные сигналы приемников (излучателей) в режиме излучения. При этом каждая из рамок имеет возможность углового поворота относительно корпуса измерительной стойки.

Каждый приемник одной измерительной стойки, приняв сигналы от всех излучателей (приемников) другой измерительной стойки и излучателей 4 и 5 штанги 3, фиксирует свое положение относительно другой измерительной стойки и начала координат. Последовательно задействовав каждый из приемников 8-13 (излучателей) обеих измерительных стоек с помощью ЭВМ, рассчитывают базу измерения для данного положения измерительных стоек относительно гибочного шаблона 2 и обрабатываемой трубы 1.

Существенным преимуществом расчетной базы измерения перед способами измерения с фиксированной материальной базой измерения является то, что увеличение объекта измерения в габаритах, не влечет за собой увеличение массогабаритных характеристик измерительного устройства, а также исключает влияние на точность измерения его собственных деформаций зависящих от условий эксплуатации и массогабаритных характеристик, а потому не ухудшаются условия работы с измерительным устройством .

.

После настройки измерительной системы штанга 3 с излучателями 4 и 5 извлекается из рабочего ручья гибочного шаблона. Обрабатываемая труба 1 устанавливается на станке произвольно относительного базового торца ползуна. Во внутреннюю полость трубы 1 заводится и закрепляется штанга 3 с излучателями 4 и 5.

Включаются в работу приема сигналов измерительные стойки, и приемники 8-13 принимают сигналы излучателей 4 и 5 для определения точного перемещения трубы по оси подачи на длину начального прямого участка lн, заданного чертежом. Далее подача трубы прекращается. Труба закрепляется в зажиме и включается механизм поворота гибочного шаблона на заданный угол. При этом пластическая деформация изгиба начинается после перемещения трубы по оси Х на некоторую величину способ контроля параметров трубы при многоколенной гибке, патент № 2025167lн (фиг.5), выражающую смещение риски начала погиба от теоретической линии сопряжения радиуса погиба с прямым участком трубы.

Величина смещения определяется конструктивным исполнением станка, износом его механизмов и размерами гибочного шаблона. При обычной традиционной гибке эта величина, так же как и способ контроля параметров трубы при многоколенной гибке, патент № 2025167lк определяется опытной гибкой трубы данного диаметра на угол 90о с определением величин а и б и расчетом способ контроля параметров трубы при многоколенной гибке, патент № 2025167lн и способ контроля параметров трубы при многоколенной гибке, патент № 2025167 lк.

В предлагаемом способе контроля параметров трубы величина способ контроля параметров трубы при многоколенной гибке, патент № 2025167lнопределяется максимальной координатой Х излучателей 4 и 5 до появления координаты Y, свидетельствующей о фактическом начале пластической деформации изгиба. По величине способ контроля параметров трубы при многоколенной гибке, патент № 2025167lн определяется угол поворота способ контроля параметров трубы при многоколенной гибке, патент № 2025167н(фиг.6) гибочного шаблона до начала фактической пластической деформации изгиба:

способ контроля параметров трубы при многоколенной гибке, патент № 2025167 =tgспособ контроля параметров трубы при многоколенной гибке, патент № 2025167н; способ контроля параметров трубы при многоколенной гибке, патент № 2025167н=arctgспособ контроля параметров трубы при многоколенной гибке, патент № 2025167

Полный угол поворота гибочного шаблона способ контроля параметров трубы при многоколенной гибке, патент № 2025167 к определяется как сумма углов:

способ контроля параметров трубы при многоколенной гибке, патент № 2025167 к = способ контроля параметров трубы при многоколенной гибке, патент № 2025167 1 + способ контроля параметров трубы при многоколенной гибке, патент № 2025167н .

Угол погиба с учетом пружинения способ контроля параметров трубы при многоколенной гибке, патент № 2025167 1 равен

способ контроля параметров трубы при многоколенной гибке, патент № 2025167 1 = m способ контроля параметров трубы при многоколенной гибке, патент № 2025167 способ контроля параметров трубы при многоколенной гибке, патент № 2025167 , где m - усредненный коэффициент, учитывающий упругую деформацию в зависимости от материала;

способ контроля параметров трубы при многоколенной гибке, патент № 2025167 - угол погиба.

После поворота гибочного шаблона на угол способ контроля параметров трубы при многоколенной гибке, патент № 2025167к станок выключается. Вычислительный комплекс по результатам замеров пространственного положения излучателей 4 и 5, определяющих положение в пространстве начального прямого участка трубы, выдает действительные параметры отогнутого колена. Для чего необходимо снять координаты излучателей 4 и 5 в трех положениях трубы:

I - после подачи трубы на длину прямого участка;

II - после поворота гибочного шаблона на угол способ контроля параметров трубы при многоколенной гибке, патент № 2025167 к без освобождения трубы из зажима;

III - после освобождения трубы из зажима.

Освобожденная от зажима труба под действием упругой деформации отклоняется от гибочного шаблона (фиг.2) на угол пружинения способ контроля параметров трубы при многоколенной гибке, патент № 2025167 пр . При этом начальный прямолинейный участок трубы, несущий излучатели 4 и 5, получает значительные угловые перемещения, что способствует более точному определению параметров.

Математический аппарат подсчета параметров колена состоит в использовании свойств пересекающихся прямых, лежащих в плоскости изгиба и содержащих каждая по две точки, расстояние между которыми и координаты которых известны.

Уравнение прямой, проходящей через две точки А и В с известными координатами имеет описание:

способ контроля параметров трубы при многоколенной гибке, патент № 2025167 = способ контроля параметров трубы при многоколенной гибке, патент № 2025167 , которое при известных ХА, ХВ, YA, YB приводится к виду Y = kx + b из которого и определятся величины k и b, где k = tgспособ контроля параметров трубы при многоколенной гибке, патент № 2025167 , где способ контроля параметров трубы при многоколенной гибке, патент № 2025167 - угол наклона прямой к оси Х.

В предлагаемом способе контроля параметров трубы при многоколенной гибке точками с известными координатами являются излучатели 4 и 5 (соответственно точкой А обозначен излучатель 4, а точкой Б - излучатель 5 на фиг.1-3).

По координатам излучателей 4 и 5 на штанге 3 в положениях трубы I, II и III записывают уравнения прямых:

YI = kIспособ контроля параметров трубы при многоколенной гибке, патент № 2025167 xI + bI

YII = kII способ контроля параметров трубы при многоколенной гибке, патент № 2025167xII + bII

YIII = kIII способ контроля параметров трубы при многоколенной гибке, патент № 2025167xIII + bIII

из которых определяют числовые значения угловых коэффициентов kI, kII, kIII, равных тангенсу угла наклона начального прямого участка трубы к оси Х до гибки, после гибки, когда труба еще в зажиме, и после гибки освобожденной из прижима трубы.

Тогда фактический угол гиба способ контроля параметров трубы при многоколенной гибке, патент № 2025167 i на i-ом погибе (фиг.4) равен углу пересечения линий, совмещенных с отрезками АВ в положениях трубы I и III, т.е.

tgспособ контроля параметров трубы при многоколенной гибке, патент № 2025167i = способ контроля параметров трубы при многоколенной гибке, патент № 2025167 ; способ контроля параметров трубы при многоколенной гибке, патент № 2025167i=arctgспособ контроля параметров трубы при многоколенной гибке, патент № 2025167

Фактический угол пружинения на i-ом погибе равен углу пересечения линий, совмещенных с отрезками АВ в положениях трубы II и III, т.е.

tgспособ контроля параметров трубы при многоколенной гибке, патент № 2025167пр = способ контроля параметров трубы при многоколенной гибке, патент № 2025167 ; способ контроля параметров трубы при многоколенной гибке, патент № 2025167пр=arctgспособ контроля параметров трубы при многоколенной гибке, патент № 2025167

Фактический угол гиба способ контроля параметров трубы при многоколенной гибке, патент № 2025167 i при зажатой трубе определяется по зависимости

tgспособ контроля параметров трубы при многоколенной гибке, патент № 2025167i = способ контроля параметров трубы при многоколенной гибке, патент № 2025167 способ контроля параметров трубы при многоколенной гибке, патент № 2025167

Для первого погиба направление отрезка АВ в положение трубы I совпадает с осью Х, поэтому:

kI = 0

способ контроля параметров трубы при многоколенной гибке, патент № 20251671 = arctg kII способ контроля параметров трубы при многоколенной гибке, патент № 2025167пр=arctgспособ контроля параметров трубы при многоколенной гибке, патент № 2025167

способ контроля параметров трубы при многоколенной гибке, патент № 2025167= arctg kIII

Определив действительные значения углов способ контроля параметров трубы при многоколенной гибке, патент № 2025167 1 ,способ контроля параметров трубы при многоколенной гибке, патент № 2025167пр, способ контроля параметров трубы при многоколенной гибке, патент № 2025167, способ контроля параметров трубы при многоколенной гибке, патент № 2025167 н, способ контроля параметров трубы при многоколенной гибке, патент № 2025167 lн, lн по известным зависимостям вычислительный комплекс выдает и все остальные параметры трубы и техпроцесса:

способ контроля параметров трубы при многоколенной гибке, патент № 2025167к - угол поворота гибочного шаблона;

способ контроля параметров трубы при многоколенной гибке, патент № 2025167 l1 - смещение вершины угла второго погиба;

lпог1 - длина трубы, приходящаяся на первый погиб;

Rп - действительный радиус погиба;

способ контроля параметров трубы при многоколенной гибке, патент № 2025167 lк - смещение риски отметки конца погиба;

Lостатка - остаток прямой трубы после гибки первого погиба.

Таким образом, не снимая трубы со станка, после первого погиба получаем полную информацию о параметрах трубы и техпроцесса.

Задание параметров трубы последующих погибов удобнее пояснить на примере изготовления 4-коленной трубы с известными размерами (фиг.7).

На примере изготовления конкретной трубы (фиг.7) покажем каким образом после определения действительных параметров отогнутого колена происходит корректировка параметров последующих колен (длин, угловых размеров) в целях обеспечения изготовления трубы требуемой конфигурации.

Предположим, что необходимо изготовить трубу (фиг.7) из углеродистой стали диаметром 60 мм и размерами c, l1, l2, c1, L,

при этом:

L = 2500 мм; l1 = 500 мм; l2 = 1500 мм; с1 = 150 мм способ контроля параметров трубы при многоколенной гибке, патент № 2025167= способ контроля параметров трубы при многоколенной гибке, патент № 2025167= способ контроля параметров трубы при многоколенной гибке, патент № 2025167= способ контроля параметров трубы при многоколенной гибке, патент № 2025167= 90способ контроля параметров трубы при многоколенной гибке, патент № 2025167; С = 600 мм.

Назначаются технологические параметры гибки трубы на станке :

Rg - средний радиус гибочного шаблона для трубы диаметром 60 мм рекомендуется Rg = 160 мм;

способ контроля параметров трубы при многоколенной гибке, патент № 2025167 к- угол поворота гибочного шаблона по отсчетному устройству станка, равный сумме способ контроля параметров трубы при многоколенной гибке, патент № 20251671 + способ контроля параметров трубы при многоколенной гибке, патент № 2025167н , где способ контроля параметров трубы при многоколенной гибке, патент № 2025167 н- угол поворота гибочного шаблона до начала пластической деформации изгиба, определяется предлагаемым способом в начале гибки;

способ контроля параметров трубы при многоколенной гибке, патент № 2025167 1- угол гиба с учетом пружинения первоначально задается расчетом по формуле:

способ контроля параметров трубы при многоколенной гибке, патент № 20251671= m способ контроля параметров трубы при многоколенной гибке, патент № 2025167способ контроля параметров трубы при многоколенной гибке, патент № 2025167 , где способ контроля параметров трубы при многоколенной гибке, патент № 2025167 - угол погиба по чертежу;

m - усредненный коэффициент упругой деформации, учитывающий угол пружинения в зависимости от материала, для нашего случая:

m = 1,022

способ контроля параметров трубы при многоколенной гибке, патент № 2025167 1= 1,022 x 90о = 92о

lн - длина начального прямого участка, которая рассчитывается по размеру l1:

lн = l1 - Rп , где Rп - средний радиус погиба трубы после снятия упругой деформации:

Rп = Rg способ контроля параметров трубы при многоколенной гибке, патент № 2025167k где k - усредненный коэффициент упругой деформации, учитывающий марку материала трубы. Для нашего случая k = 1,024 .

Rп = 160 х 1,024 = 164 мм; lн = 500 - 164= = 336 мм.

Далее устанавливаем на станок комплект гибочной оснастки с радиусом гибочного шаблона Rg = 160 мм, располагаем около станка измерительные системы и настраиваем ее стойки относительно круга и начала координат. Затем устанавливаем трубу на станок произвольно, но так чтобы конец трубы выступал относительно торца ползуна настолько, чтобы раскрепить по внутренней поверхности трубы штангу 3, несущую излучатели 4 и 5.

Труба подается по оси Х на длину прямого начального участка, т.е. до тех пор, пока координаты, выданные вычислительным комплексом излучателей 4 и 5, обозначенные точками А и В, будут иметь значения:

точка А (XA = lн; YA = 0)

точка В (XB = lн + способ контроля параметров трубы при многоколенной гибке, патент № 2025167; YB = 0)

После этого трубу закрепляют прижимом к гибочному шаблону и включают станок на гибку.

Пластическая деформация изгиба не начинается сразу с момента начала вращения гибочного шаблона, а с некоторого перемещения способ контроля параметров трубы при многоколенной гибке, патент № 2025167lн трубы вдоль оси подач. Момент начала пластической деформации изгиба фиксируется приращением координаты Х излучателей 4 и 5 до появления координаты Y. В нашем случае зафиксированная величина способ контроля параметров трубы при многоколенной гибке, патент № 2025167lн = 5,2 мм, а угол поворота гибочного шаблона способ контроля параметров трубы при многоколенной гибке, патент № 2025167 н ( фиг. 8) и полный первоначальный угол поворота гибочного шаблона определяются по зависимостям: способ контроля параметров трубы при многоколенной гибке, патент № 2025167н=arctgспособ контроля параметров трубы при многоколенной гибке, патент № 2025167 = arctgспособ контроля параметров трубы при многоколенной гибке, патент № 2025167 = 1,90

способ контроля параметров трубы при многоколенной гибке, патент № 2025167к = способ контроля параметров трубы при многоколенной гибке, патент № 20251671 + способ контроля параметров трубы при многоколенной гибке, патент № 2025167н

способ контроля параметров трубы при многоколенной гибке, патент № 2025167 к= 92 + 1,9о = 93,9о

После поворота гибочного шаблона на угол способ контроля параметров трубы при многоколенной гибке, патент № 2025167 к станок выключается. Начальный участок трубы при этом займет положение II (фиг.2) и будет наклонен к оси Х под углом способ контроля параметров трубы при многоколенной гибке, патент № 20251671 , величина которого определяется по угловому коэффициенту kII:

способ контроля параметров трубы при многоколенной гибке, патент № 2025167 1= arctg kII = 92,3о .

Далее труба освобождается от зажима. Начальный участок трубы займет положение II и будет наклонен к оси Х под углом способ контроля параметров трубы при многоколенной гибке, патент № 2025167 , величина которого определяется по угловому коэффициенту kIII:

способ контроля параметров трубы при многоколенной гибке, патент № 2025167= arctg kIII = 90,3способ контроля параметров трубы при многоколенной гибке, патент № 2025167 .

Угол пружинения способ контроля параметров трубы при многоколенной гибке, патент № 2025167 пр можно определить как

способ контроля параметров трубы при многоколенной гибке, патент № 2025167пр=arctgспособ контроля параметров трубы при многоколенной гибке, патент № 2025167 или способ контроля параметров трубы при многоколенной гибке, патент № 2025167пр=способ контроля параметров трубы при многоколенной гибке, патент № 2025167=92,3способ контроля параметров трубы при многоколенной гибке, патент № 2025167-90,3способ контроля параметров трубы при многоколенной гибке, патент № 2025167=2способ контроля параметров трубы при многоколенной гибке, патент № 2025167

Таким образом по результатам замеров и предложенному алгоритму вычислений выдаются после гибки первого погиба следующие параметры трубы и техпроцесса:

способ контроля параметров трубы при многоколенной гибке, патент № 2025167=90,3способ контроля параметров трубы при многоколенной гибке, патент № 2025167 способ контроля параметров трубы при многоколенной гибке, патент № 2025167= +0,3способ контроля параметров трубы при многоколенной гибке, патент № 2025167

способ контроля параметров трубы при многоколенной гибке, патент № 2025167пр= 2о способ контроля параметров трубы при многоколенной гибке, патент № 2025167lн = 5,2 мм

способ контроля параметров трубы при многоколенной гибке, патент № 20251671= 92,3о lн = 336 мм

способ контроля параметров трубы при многоколенной гибке, патент № 2025167н = 1,9о

способ контроля параметров трубы при многоколенной гибке, патент № 2025167к = 94,2о способ контроля параметров трубы при многоколенной гибке, патент № 2025167l1=Cспособ контроля параметров трубы при многоколенной гибке, патент № 2025167tgспособ контроля параметров трубы при многоколенной гибке, патент № 2025167=3,2 мм

Кроме того, после каждого погиба выдается длина остатка прямой трубы, исходя из длины отрезанной заготовки и длины трубы от начала до конца произведенного погиба.

Развернутая длина трубы:

Lраз = lн + lпр1-2 +lпр2-3 + lпр3-4 + lн + 4lпог, где lн = l1-Rп; Rп = Rg х 1,024 = 163,8 = 164 мм

lн = 500-164 = 336

lпр1-2 = с - 2Rп = 600 - 328 = 272 мм

lпр2-3 = l2-l1 - 2Rп = 1500 - 500 - 328 = 672 мм

lн = L - l2 - Rп = 2500 - 1500 - 164 = 836 мм

lпр3-4 = (с - с1) - 2Rп = 450 - 328 = 122 мм

lпог = способ контроля параметров трубы при многоколенной гибке, патент № 2025167 = способ контроля параметров трубы при многоколенной гибке, патент № 2025167 = 248,8 мм

4lпог = 248,8 х 4 = 995 мм

Lраз. = 336 + 272 + 672 + 122 + 836 + 995= = 3233 мм

Допуск на отрезку способ контроля параметров трубы при многоколенной гибке, патент № 2025167 3 мм.

Полагаем, что отрезана заготовка длиною 3235 мм.

Остаток трубы после первого погиба:

Lост = Lзаг - [lн + способ контроля параметров трубы при многоколенной гибке, патент № 2025167lн + lпог1 + способ контроля параметров трубы при многоколенной гибке, патент № 2025167 lк], где

l1пог = способ контроля параметров трубы при многоколенной гибке, патент № 2025167 ; l1пог = способ контроля параметров трубы при многоколенной гибке, патент № 2025167 =250,3

способ контроля параметров трубы при многоколенной гибке, патент № 2025167lк - отклонение отметки риски конца погиба от теоретической линии сопряжения радиуса погиба с прямым участком трубы .

Фактические величины Rп и способ контроля параметров трубы при многоколенной гибке, патент № 2025167lк определяются по зависимостям, отражающим условие равенства длины дуги погиба до и после освобождения согнутой трубы из зажима (фиг.7) и известную координату XD точки D (конец погиба):

способ контроля параметров трубы при многоколенной гибке, патент № 2025167=способ контроля параметров трубы при многоколенной гибке, патент № 2025167 способ контроля параметров трубы при многоколенной гибке, патент № 2025167

Для нашего случая способ контроля параметров трубы при многоколенной гибке, патент № 2025167lк = 2,8 мм, Rп = 164 мм

Lост = 3235 - 336 + 5,2 + 250,3 + 2,8 = 2640,7 мм

Таким образом, не снимая трубы со станка, после каждого погиба получаем полную информацию о параметрах трубы и техпроцесса.

Далее вычислительный комплекс задает параметры гибки второго погиба при соблюдении следующих условий:

угол второго погиба должен быть равен углу первого погиба, что обеспечит параллельность прямого остатка трубы после гибки второго погиба начальному прямому участку трубы;

длина прямого участка трубы между первым и вторым погибом определяется габаритным размером С .

Выдаваемые параметры гибки второго погиба:

Угол поворота гибочного шаблона способ контроля параметров трубы при многоколенной гибке, патент № 2025167:

способ контроля параметров трубы при многоколенной гибке, патент № 2025167= способ контроля параметров трубы при многоколенной гибке, патент № 2025167= 94,2способ контроля параметров трубы при многоколенной гибке, патент № 2025167

Длина прямого участка трубы между первым и вторым погибами (фиг.6):

способ контроля параметров трубы при многоколенной гибке, патент № 2025167=

По данным параметрам производим гибку второго погиба, т.е. вдоль оси Х труба подается на величину lпр1-2, закрепляется в зажиме, производится поворот гибочного шаблона на угол

способ контроля параметров трубы при многоколенной гибке, патент № 2025167= 94,2способ контроля параметров трубы при многоколенной гибке, патент № 2025167.

После гибки по методике, описанной для первого гиба, выдаются действительные значения: способ контроля параметров трубы при многоколенной гибке, патент № 2025167пр, способ контроля параметров трубы при многоколенной гибке, патент № 2025167,способ контроля параметров трубы при многоколенной гибке, патент № 2025167 ,по которым уточняются Rп, способ контроля параметров трубы при многоколенной гибке, патент № 2025167lн, способ контроля параметров трубы при многоколенной гибке, патент № 2025167lк, которые должны совпадать с величинами аналогичных параметров на первом погибе или незначительно отличаются от них в случае отклонения угла погиба способ контроля параметров трубы при многоколенной гибке, патент № 2025167 от способ контроля параметров трубы при многоколенной гибке, патент № 2025167.

Далее задаются на станке технологические параметры гибки сразу последнего и предпоследнего погибов. При этом длины прямых участков между погибами и конечного участка, углы погибов способ контроля параметров трубы при многоколенной гибке, патент № 2025167 и способ контроля параметров трубы при многоколенной гибке, патент № 2025167 определяются из следующих условий:

углы третьего и четвертого погибов должны быть равны между собой, чтобы обеспечить параллельность прямых участков после второго погиба и конечного прямого участка;

сумма проекций участков трубы на оставшихся погибах на ось Y должна соответствовать размеру (С - С1), а сумма проекций всех участков трубы на ось Х - размеру L.

Соблюдение перечисленных условий обеспечит собираемость трубы в трубопровод без отрезки припусков и подгибки трубы в процессе сборки за счет того, что предлагаемый способ контроля параметров трубы позволяет заданием откорректированных параметров на последнем и предпоследних погибах поместить конец многоколенной трубы в сборочную точку N (фиг.6) путем сравнения величины суммы проекций участков гнутой трубы на ось Х со сборочным размером L, а также определения отклонения остатка прямой трубы. Отклонение суммы проекций всех участков гнутой трубы на ось Х при изготовлении трубы традиционным способом может быть величиной отрицательной и положительной.

На практике заготовку отрезают заведомо длиннее, чтобы готовую трубу можно было обрезать в размер L, который имеет жесткий допуск на изготовление, и определением величины отклонения фактического остатка прямой трубы от теоретической развернутой длины заготовки, приходящейся на оставшиеся погибы.

Отклонение фактического остатка прямой трубы от теоретической развернутой длины заготовки может быть величиной положительной и минусовой. В случае минусового отклонения при традиционном методе изготовления многоколенной трубы его устраняют ручной тяжелой подгонкой формы трубы, а в случае плюсового отклонения этот припуск отрезают на готовой трубе после обмера трубы на измерительном стенде. В нашем случае величина отклонения компенсируется соответствующей корректировкой параметров трубы на оставшихся погибах (фиг.9).

Для нашего случая вычислительный комплекс выдал величину отклонения способ контроля параметров трубы при многоколенной гибке, патент № 2025167L = = -3 мм. В связи с тем, что параметры третьего и четвертого погибов назначаются с учетом условия огибания объектов на трассе трубопровода как слева, так и справа трубы, величину отклонения способ контроля параметров трубы при многоколенной гибке, патент № 2025167L делим на два, т.е. величину смещения вершины угла третьего погиба смещаем на величину способ контроля параметров трубы при многоколенной гибке, патент № 2025167 = способ контроля параметров трубы при многоколенной гибке, патент № 2025167 , а другую половину отклонения учитываем при назначении длины конечного прямого участка lк.

Отклонение способ контроля параметров трубы при многоколенной гибке, патент № 2025167 определяет угол корректировки углов третьего и четвертого погибов (фиг.9).

способ контроля параметров трубы при многоколенной гибке, патент № 2025167 = sinспособ контроля параметров трубы при многоколенной гибке, патент № 2025167

способ контроля параметров трубы при многоколенной гибке, патент № 2025167=arcsin - способ контроля параметров трубы при многоколенной гибке, патент № 2025167 = arcsin 0,007

способ контроля параметров трубы при многоколенной гибке, патент № 2025167= -0,4способ контроля параметров трубы при многоколенной гибке, патент № 2025167

Таким образом, вычислительный комплекс расчетом выдает следующие корректированные параметры трубы для гибки последующих колен:

способ контроля параметров трубы при многоколенной гибке, патент № 2025167 = -1,5 мм; способ контроля параметров трубы при многоколенной гибке, патент № 2025167=способ контроля параметров трубы при многоколенной гибке, патент № 2025167= -0,4способ контроля параметров трубы при многоколенной гибке, патент № 2025167

способ контроля параметров трубы при многоколенной гибке, патент № 2025167=способ контроля параметров трубы при многоколенной гибке, патент № 2025167=89,6способ контроля параметров трубы при многоколенной гибке, патент № 2025167 Rп=164 мм; l2-пр3=669,7 мм

lпр3-4 = 128,6 мм; lк = 831,8 мм; способ контроля параметров трубы при многоколенной гибке, патент № 2025167=способ контроля параметров трубы при многоколенной гибке, патент № 2025167=93,59способ контроля параметров трубы при многоколенной гибке, патент № 2025167

Величина проекции трубы на ось Х должна быть равна 2500 мм; величина проекций участков трубы на ось Y - 600 мм.

Направление начального и конечного прямых участков трубы должно совпадать или быть параллельным относительно оси Х.

Составляем выражение для подсчета суммы проекций участков трубы на ось Х:

способ контроля параметров трубы при многоколенной гибке, патент № 2025167 +

Сумма проекций на ось Y:

способ контроля параметров трубы при многоколенной гибке, патент № 2025167 способ контроля параметров трубы при многоколенной гибке, патент № 2025167

В связи с тем, что углы третьего и четвертого погибов равны между собой, обеспечивается взаимная параллельность прямых участков между собой и параллельность их оси Х.

Труба без последующей подгонки на сборке имеет сборочный размер L = 2500 мм, обеспечены габариты С = 600 мм и С1 = =150 мм, габарит l1 = 500 мм, а l2 = 1500 мм в допуске на огибание трубой объектов по трассе.

Кроме того, труба оказалась замеренной по всем своим параметрам и нет необходимости помещать ее для измерения на контрольно-измерительный стенд.

Для точного изготовления многоколенной трубы не потребовалась труба-эталон или шаблон.

Реализация предлагаемого способа гибки обеспечивает следующие преимущества изготовления трубопроводов:

исключается подгибка труб - дополнительная трудоемкая операция, нередко сопряженная с тяжелым ручным трудом, которая позволяет довести пространственное положение концевых присоединительных участков трубы в пределах заданного допуска на их взаимное отклонение;

данное обстоятельство значительно облегчает условия сборки трубы с концевой арматурой (фланец, штуцер, ниппель), так как сборка выполняется перпендикулярно оси концевого участка и с помощью простейшей оснастки, на порядок снижая трудоемкость сборки;

создаются условия внедрения технологии изготовления труб с приварными до операции гибки фланцами, которая значительно облегчает и удешевляет создание средств механизации не только на основных, но и вспомогательных операциях (межоперационное транспортирование, установка и съем трубы со станка после обработки, межоперационное накопление);

создаются условия прокладки трасс трубопроводов в затесненных условиях;

устраняется необходимость создания дорогостоящих контрольно-измерительных стендов для измерения строительных размеров при изготовлении труб по эскизам, так как все параметры трубы определяются в процессе гибки.

Класс B21D7/12 с программным управлением 

способ автоматического управления процессом гибки труб -  патент 2481910 (20.05.2013)
станок для гибки прутков -  патент 2419502 (27.05.2011)
устройство и способ для автоматического изготовления строительной панели из листового материала (варианты) -  патент 2114713 (10.07.1998)
способ гибки изделия и устройство для его осуществления -  патент 2095174 (10.11.1997)
Наверх