гидропульсатор ультразвуковой частоты

Классы МПК:B06B1/16 устройства, снабженные вращающимися неуравновешенными массами 
Автор(ы):
Патентообладатель(и):Уральский научно-исследовательский институт метрологии
Приоритеты:
подача заявки:
1991-07-04
публикация патента:

Использование: при динамической балансировке датчиков быстропеременных давлений. Сущность: пульсация давления ультразвуковой частоты в трубах 1 и 2 возбуждается от пьезоэлектрического возбудителя колебаний 4 в форме стоячих гидроакустических волн при подаче на него напряжения от генератора переменного напряжения 13 в ряду собственных частот (гармоник) трубчатого резонатора. При этом пучности давления всегда расположены на заглушенных концах труб 1 и 2. 1 ил. ил.
Рисунок 1

Формула изобретения

ГИДРОПУЛЬСАТОР УЛЬТРАЗВУКОВОЙ ЧАСТОТЫ, содержащий пьезоэлектрический возбудитель колебаний, связанный с ним резонатор и головку для установки датчиков быстропеременного давления, один из которых эталонный, установленную на резонаторе, отличающийся тем, что, с целью повышения точности и эффективности, он снабжен камерой для симметричного размещения в ней пьезоэлектрического возбудителя колебаний, резонатор выполнен в виде двух соосно и герметично установленных в камере труб с заглушками и охватывающей пьезоэлектрический возбудитель колебаний втулки и парой неуплотненных поршней, трубы расположены симметрично относительно пьезоэлектрического возбудителя колебаний по обе стороны от него, наружные поверхности труб выполнены переменного вдоль оси сечения, а поршни установлены во втулке с обеих сторон с возможностью ограниченного осевого перемещения между пьезоэлектрическим возбудителем колебаний и трубами.

Описание изобретения к патенту

Изобретение относится к измерительной технике быстропеременных давлений и может быть использовано при динамической градуировке датчиков быстропеременных давлений.

Известные гидропульсаторы с пьезоэлектрическим возбудителем, используемые для сличения датчиков быстропеременных давлений с эталонным датчиком, обладают низкой эффективностью вследствие большого рассеяния энергии колебаний пьезоэлектрического возбудителя за счет акустического контакта последнего с корпусом гидропульсатора.

Гидропульсатор [3], наиболее близкий аналог, обладает более эффективной передачей энергии от пьезовозбудителя колебаний к столбу жидкости в трубчатом резонаторе, однако и в нем присутствует акустический контакт пьезовозбудителя с корпусом через достаточно жесткие мембраны.

В области ультразвуковых частот во всех известных гидропульсаторах возбуждение пульсации в трубчатом резонаторе малоэффективно из-за наличия большого числа полос запирания [1 и 2] распространения ультразвука в трубчатом резонаторе в окрестностях радиальных резонансов стенок трубы, где акустическая проводимость последних резко возрастает, вследствие чего частотный спектр гидропульсатора содержит большое число амплитудных провалов, а возникающая паразитная ультразвуковая вибрация передается на чувствительные элементы датчиков быстропеременных давлений, снижая точность измерений.

Целью изобретения является повышение точности и эффективности гидропульсатора ультразвуковых частот.

Для этого гидропульсатор снабжен камерой для симметричного размещения в ней пьезоэлектрического возбудителя колебаний, резонатор выполнен в виде двух соосно и герметично установленных в камере труб с заглушками и охватывающей пьезоэлектрический возбудитель колебаний втулки, и парой неуплотненных поршней, трубы расположены симметрично относительно пьезоэлектрического возбудителя колебаний по обе стороны от него, наружные поверхности труб имеют переменное вдоль оси сечение, а поршни установлены во втулке с обеих ее сторон с возможностью ограниченного осевого перемещения между пьезоэлектрическим возбудителем колебаний и трубами.

На чертеже изображен пример конкретного выполнения гидропульсатора ультразвуковой частоты.

Гидропульсатор ультразвуковой частоты содержит трубчатый резонатор в виде двух соосных труб 1 и 2, наружные поверхности которых имеют переменное сечение, например, сужающееся к периферии.

Трубы 1 и 2 симметрично и герметично установлены в камере 3, внутри которой размещен пьезоэлектрический возбудитель колебаний 4 в виде столба пьезокерамических дисков, торцы которого снабжены симметричными неуплотненными поршнями 5 и 6, размещенных во втулке 7 с возможностью ограниченного осевого смещения.

Периферийные концы труб 1 и 2 заглушены головкой 8 с гнездами для датчиков быстропеременного деления и пробкой 9. Камера 3 соединена трубопроводом с гидропрессом 10 и манометром 11.

Пьезоэлектрический возбудитель колебаний 4 соединен через герморазъем 12 с генератором переменного напряжения 13.

С помощью гидропресса 10 по манометру 11 устанавливается требуемый уровень постоянной составляющей давления, которое передается в полости труб 1 и 2 через зазоры между неуплотненными поршнями 5 и 6 и втулки 7, также сообщающейся через отверстие с полостью камеры 3.

Пульсация давления ультразвуковой частоты в трубах 1 и 2 возбуждается от пьезоэлектрического возбудителя колебаний 4 в форме стоячих гидроакустических волн при подаче на него напряжения от генератора переменного напряжения 13 в ряду собственных частот (гармоник) трубчатого резонатора. При этом пучности давления всегда расположены на заглушенных концах труб 1 и 2.

Эффективная передача звуковой энергии от пьезоэлектрического возбудителя колебаний 4 к столбу жидкости в трубах 1 и 2 возникает за счет отсутствия непосредственного акустического контакта пьезоэлектрического возбудителя колебаний 4 с камерой 3 и трубами 1 и 2, причем за счет переменного наружного сечения труб 1 и 2 исключаются полосы запирания распространения в них ультразвука, поскольку ряд собственных частот радиальных стоячих волн трубы, как механической системы с распределенными параметрами, зависит от толщины стенок трубы, которая в данном случае является переменной по длине трубы, что препятствует возникновению стоячих радиальных волн ее стенок так, как нарушено основное условие их распространения - наличие постоянной радиальной жесткости стенок трубы. В результате повышается эффективность гидропульсатора ультразвуковой частоты в работе и повышается точность измерений за счет снижения паразитной вибрации, передающейся к чувствительным элементам датчиков быстропеременных давлений.

Класс B06B1/16 устройства, снабженные вращающимися неуравновешенными массами 

способ направленного инерционного вибровозбуждения и дебалансный вибровозбудитель направленного действия для его осуществления -  патент 2528715 (20.09.2014)
способ возбуждения негармонических колебаний момента в вибрационных сепарирующих машинах -  патент 2528271 (10.09.2014)
способ и система для возврата неуравновешенной массы в вибраторе -  патент 2488453 (27.07.2013)
способ возбуждения резонансных механических колебаний и устройство для его осуществления -  патент 2486017 (27.06.2013)
способ возбуждения колебаний -  патент 2476275 (27.02.2013)
дебалансный вибровозбудитель -  патент 2464108 (20.10.2012)
механический вибратор -  патент 2440856 (27.01.2012)
вибросейсмоисточник -  патент 2421283 (20.06.2011)
способ возбуждения резонансных механических колебаний и устройство для его осуществления (варианты) -  патент 2410167 (27.01.2011)
способ возбуждения колебаний -  патент 2410166 (27.01.2011)
Наверх