Использование: получение жидких углеводородов. Сущность: штамм сульфат-редуцирующих бактерий выращивают в анаэробном режиме в присутствии H2 и CO2 на традиционной питательной среде, используя при этом в качестве органической добавки лактат кальция и дрожжевой экстракт. Соотношение двуокиси углерода и водорода поддерживают в соотношении 1 : 20. 1 з.п.ф-лы, 2 табл., 2 ил.
1. СПОСОБ ПОЛУЧЕНИЯ ЖИДКИХ УГЛЕВОДОРОДОВ, предусматривающий выращивание бактерий в анаэробных условиях в присутствии водорода и двуокиси углерода на питательной среде, содержащей минеральные соли и органическую добавку, отличающийся тем, что в качестве бактерий используют штамм микроорганизмов Desulfovibrio desulfuricans ВКМ В-1799, а в качестве органической добавки питательная среда содержит лактат кальция и дрожжевой экстракт. 2. Способ по п.1, отличающийся тем, что газовая среда выращивания микроорганизмов содержит двуокись углерода и водород в соотношении 1 : 20.
Описание изобретения к патенту
Изобретение относится к микробиологии, а именно к способам получения жидких углеводородов. Наиболее распространенными являются способы получения жидких углеводородов из органических продуктов и с использованием СО2 и Н2химическими методами. Эти реакции протекают при высоких температурах, давлении, в присутствии дорогостоящих металлоксидных катализаторов (Патент N 4670472 и 1401814, кл. С 07 С 1/04). Известны способы получения углеводородов с помощью микроорганизмов. Известен способа получения внеклеточных углеводородов микроорганизмами, например образование метаногенами газообразного углеводорода - метана из СО2 и Н2. Известен способ получения биогаза из жидких удобрений анаэробной ферментацией органических веществ. Известен способ получения метана анаэробной ферментацией органических материалов. Кроме того, известен способ получения углеводородных смесей С2-С5аэробным культивированием грибов дрожжей, бактерий и актиномицетов с использованием различных биомасс. Прототипом предлагаемого изобретения является способ получения метана из СО2 и Н2 метанобразующими бактериями в процессе анаэробной деструкции органических соединений. Однако в заявке не указана среда, на которой выращиваются бактерии. По-видимому, используется среда, принятая для культивирования метанобразующих бактерий, содержащая, например, минеральные соли, г/л: КН2РО4 1,0; NH4Cl 0,75; К2НРО4 2,0; MgCl26Н2O) 0,02; СОCl26H2O 0,01; NaHCO3 2,0; СаСО3 2,0, а также соли меди. В качестве источника углерода используется ацетат. Микроорганизмы культивируют в анаэробных условиях в присутствии водорода. Данный способ выбран в качестве прототипа на основании того, что метаногены культивируются в анаэробных условиях на среде, содержащей органическую добавку и с использованием тех же газов (СО2 и Н2). Недостатком данного способа является образование только одного газообразного углеводорода. Целью изобретения является получение внеклеточных жидких углеводородов с большей длиной цепи. Цель достигается тем, что выращивают бактерии в анаэробных условиях в присутствии водорода и двуокиси углерода на питательной среде, содержащей минеральные соли и органическую добавку. В качестве микроорганизмов используют штамм бактерий Desulfovibrio desulfuricans ВКМ В-1799, а в качестве органической добавки питательная среда содержит лактат кальция и дрожжевой экстракт. Газовая среда выращивания микроорганизмов содержит двуокись углерода и водород в соотношении 1:20. На фиг.1 показана зависимость роста бактерий и накопления внеклеточных жидких углеводородов, где I - рост и накопление биомассы бактериями Desulfovibrio desulfuricans штамм ВКМ В-1799; II - то же, штамм ВМК В-1388; III - внеклеточные углеводороды D. desulfuricans штамм ВКМ В-1799; IУ - то же, штамм ВКМ В-1388. На фиг.2 показан спектр получаемых внеклеточных углеводородов. В табл.1 показаны данные накопления внеклеточных жидких углеводородов в культуральной жидкости в зависимости от времени культивирования бактерий. В табл. 2 - биосинтез углеводородов сульфатредуцирующими бактериями в зависимости от соотношения молекулярного водорода и двуокиси углерода в газовой фазе. Доказательством критерия существенности отличия может служить следующее: отсутствие сведений в научной и патентной литературе о получении жидких углеводородов анаэробными микроорганизмами, отсутствие в литературе и производственной практике сведений о данном направлении развития науки, в литературе и производственной практике высказывались мнения в потребности такого изобретения. Способ осуществляется следующим образом. В качестве инокулята используют двухсуточную культуру бактерий, разведенную в 10-4 - 10-5. Ее засевают в пенициллиновые флаконы с 5 мл питательной среды традиционного состава, принятой для культивирования сульфатредуцирующих бактерий в отсутствии ионов SO4-2 как акцептора электронов, например, г/л: КН2РО4 0,5; NH4Cl 1,0; СаСl2 2H2O 0,1; MgCl27H2O 1,6; лактат кальция 3,5; дрожжевой экстракт в виде 1-ного раствора HCl 0,5; вода водопроводная 1000 мл. Отсутствие в питательной среде значительных количеств сульфатов способствует увеличению (в 5 раз) образования внеклеточных жидких углеводородов сульфатредуцирующими бактериями. Использование органического субстрата в виде лактата кальция обеспечивает активное окисление данного соединения, способствуя росту бактерий. В нашем варианте данные получения экспериментальным путем и соответствуют оптимальным значениям компонентов питательной среды. Однако допустимые количественные изменения состава среды составляют, г/л: КН2РО4 0,4-0,6; NH4Cl 0,9-1,1; СаCl22H2O 0,1-0,2; MgCl2 7H2О 1,5-1,7; лактат кальция 3,4-3,6; дрожжевой экстракт в виде 1-ного водного раствора 0,9-1,1; FeSO4 7H2O в виде 5%-ного раствора в 1%-ном растворе HCl 0,4-0,6; водопроводная вода 1000 мл. При этом эти пределы обеспечивают нормальные условия жизнедеятельности сульфатредуцирующих бактерий. Перед посевом бактерий проводят стерилизацию среды. Основную среду стерилизуют при 1 атм в течение 20 мин. После стерилизации к основной среде добавляют дрожжевой экстракт, простерилизованный при 0,5 атм 20 мин и FeSO4 7Н2О, простерилизованный при 1 атм 20 мин. рН среды доводят стерильным 20% -ным раствором NaOH до оптимального значения для роста сульфатредуцирующих бактерий 7,2-7,4. Анаэробные условия достигаются кипячением и быстрым охлаждением питательной среды, а также добавлением восстановителей до начальной Eh среды = - 230 мВ. В качестве восстановителя чаще используют сульфид натрия, который стерилизуют при 0,5 атм 20 мин и добавляют по каплям перед посевом бактерий до слабого посерения среды. После посева бактерий воздух из флаконов откачивают с помощью вакуумного насоса типа МPW-5, многократно через бактериальный фильтр промывают газовой смесью, состоящей из двуокиси углерода и молекулярного водорода (отношение 1:20 лучшее по выходу жидких углеводородов, см. табл.2). В работе используют углекислоту из баллонов. Молекулярный водород получают с помощью генератора водорода типа СТС-2. Контроль состава и чистоты газовых смесей осуществляют хроматографически на газохроме-3101. Заполненные газовой смесью флаконы помещают в термостат при 30-32оС, оптимальной температуре для данного вида сульфатредуцирующих бактерий. Об интенсивности динамики накопления биомассы судят по приросту белка, который определяют по модифицированному методу Лоури, и увеличению количества сероводорода (см. фиг.1). Углеводороды из культуральной жидкости извлекают традиционным растворителем углеводородов - очищенным хлороформом, после отделения клеток бактерий при 7000 g и проверки супернатанта на отсутствие белка (для доказательства наличия влеклеточных углеводородов). Для этого к 5 мл культуральной жидкости добавляют 0,5 мл хлороформа, встряхивают в течение 10 мин и оставляют на 1 сут при комнатной температуре для более полного извлечения углеводородов. Состав и количество синтезированных бактериями углеводородов определяют методом газожидкостной хроматографии на Chrom = 5. Следует отметить, что исходное количество углеводородов в питательной среде после внесения дрожжевого экстракта и культуры сульфатредуцирующих бактерий составляло 1,5-2,0 мг/л. Увеличение внеклеточных углеводородов при росте сульфатредуцирующих бактерий в атмосфере двуокиси углерода и молекулярного водорода происходит параллельно с нарастанием биомассы, т.е. в период максимальной физиологической активности сульфатредуцирующих бактерий, а не является следствием разрушения клеток. Количество внеклеточных углеводородов достигает максимума в начале стационарной фазы роста бактерий и с прекращением накопления биомассы не увеличивается (см. табл.1). Полученные углеводороды представляют собой смесь алифатических углеводородов как нормального, так и изостроения с длиной цепи С14-С25(см. фиг. 2). Количество синтезируемых углеводородов достигает 30 мг/л. Выход углеводородов при изменении соотношения СО2 и Н2 в газовой фазе (см. табл. 2) соответствует тому, что максимальный выход углеводородов 31,50,1 мг/л достигается при соотношении Н2:СО2 = 20:1. Данный способ получения жидких углеводородов осуществлялся с использованием штаммов ВКМ В-1799, ВКМ В-1388 вида Desulfovibrio desulfuricans. Не вызывает сомнения, что все бактерии вида Desulfovibrio desulfuricans способны образовывать внеклеточные жидкие углеводороды на питательной среде, содержащей минеральные соли и лактат кальция, в атмосфере двуокиси углерода (СО2) и молекулярного водорода (Н2) в виду того, что они имеют общий генотип и обладают ярко выраженным фенотипическим сходством, лишь с разницей по времени культивирования бактерий. Обнаруженная способность сульфатредуцирующих бактерий Desulfovibrio desulfuricans продуцировать внеклеточные углеводороды при росте в гетеротрофных условиях в атмосфере двуокиси углерода и молекулярного водорода, свидетельствует о потенциальной возможности расширения практического использования биосинтетических особенностей этих бактерий. При этом особого внимания заслуживает образование внеклеточных углеводородов сульфатредуцирующими бактериями в связи с вопросом биогенного происхождения нефти.