способ определения углов поворота приводного кулачка радиально-поршневого насоса с клапанным распределением
Классы МПК: | F04B9/04 с кулачками, эксцентриками, пальцами в пазу |
Патентообладатель(и): | Горолевич Игорь Евгеньевич |
Приоритеты: |
подача заявки:
1990-06-12 публикация патента:
27.01.1995 |
Сущность изобретения: снимают индикаторную диаграмму при установившемся режиме нагрузки и расшифровывают диаграмму. Перед снятием диаграммы приводной кулачок заменяют на технологический эксцентрик. Снятие диаграммы производят при 10%-ной нагрузке насоса. 6 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6
Формула изобретения
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВ ПОВОРОТА ПРИВОДНОГО КУЛАЧКА РАДИАЛЬНО-ПОРШНЕВОГО НАСОСА С КЛАПАННЫМ РАСПРЕДЕЛЕНИЕМ, соответствующих запаздыванию открытия и закрытия всасывающего и нагнетательного клапанов, включающий снятие индикаторной диаграммы при установившемся режиме нагрузки и последующую расшифровку диаграммы, отличающийся тем, что, с целью повышения точности определения углов поворота кулачка в насосах с кулачком, имеющим участки профиля с нулевым перемещением, скоростью и ускорением поршня, равными указанным углам запаздывания, перед снятием индикаторной диаграммы приводной кулачок заменяется на технологический эксцентрик, а снятие индикаторной диаграммы производят при 10%-ной нагрузке насоса.Описание изобретения к патенту
Изобретение относится к насосостроению, в частности к радиально-поршневым насосам с кулачковым приводом поршней и с клапанным распределением рабочей жидкости. Известен поршневой насос с клапанным распределением, содержащий профилированный кулачок, обеспечивающий принудительный выстой поршня в нижней и верхней мертвых точках его движения на период запаздывания закрытия всасывающего и нагнетательного клапанов. В этом насосе приводной кулачок снабжен двумя участками профиля с постоянным радиусом кривизны, начало каждого из которых соответствует положению поршня в нижней и верхней мертвых точках его движения, а угловая протяженность каждого из участков по ходу вращения кулачка соответствует углу поворота кулачка, на котором происходит закрытие соответствующего клапана. Известен способ определения углов поворота приводного кулачка поршневого насоса с клапанным распределением путем снятия индикаторной диаграммы при установившемся режиме нагрузки и последующую расшифровку диаграммы. Давление записывается при помощи датчиков давления, присоединенных к полости цилиндра, и осциллографа [2]. Недостатком известного способа является то, что снятие индикаторной диаграммы осуществляется при номинальной нагрузке с применением в насосе завершенного конструктивного решения кулачка приводного вала. Это позволяет при расшифровке диаграммы констатировать факт наличия углов запаздывания клапанов и их протяженность. При изменении давления в гидросистеме, в состав которой включен насос с асинхронным электродвигателем, изменяется число оборотов приводного двигателя, следовательно, и время запаздывания клапанов. Таким образом, замеряемые при одних условиях значения углов запаздывания не будут достоверными при изменении режима работы насоса и вызывают погрешности при профилировании кулачка. Целью изобретения является повышение точности определения углов поворота кулачка в насосах с кулачком, имеющим участки профиля с нулевым перемещением, скоростью и ускорением поршня равные указанным углам запаздывания. Поставленная цель достигается тем, что в известном способе определения углов поворота приводного кулачка радиально-поршневого насоса с клапанным распределением, соответствующих запаздыванию открытия и закрытия всасывающего и нагнетательного клапанов, заключающемся в снятии индикаторной диаграммы при установившемся режиме нагрузки и последующую расшифровку диаграммы, при этом перед снятием индикаторной диаграммы приводной кулачок заменяется на технологический эксцентрик, а снятие индикаторной диаграммы производят при 10% нагрузке насоса. На фиг. 1 изображен насос со встроенным технологическим эксцентриком в продольном разрезе; на фиг.2 - насос с кулачком в продольном разрезе; на фиг. 3 - характеристика зависимости давления в цилиндре от угла поворота приводного вала (индикаторная диаграмма) насоса, изображенного на фиг.1; на фиг. 4 - индикаторная диаграмма насоса, изображенного на фиг.2; на фиг.5 - характеристика зависимости изменения высоты подъема клапанов от угла поворота приводного вала насосов, изображенных на фиг.1 и 2; на фиг.6 изображена характеристика изменения подачи от угла поворота приводного вала насоса, изображенного на фиг.2. Предлагаемый способ определения углов поворота приводного кулачка радиально-поршневого насоса с клапанным распределением, соответствующих запаздыванию открытия и закрытия всасывающего и нагнетательного клапанов, реализован следующим образом. Поршневой насос (см. фиг.1 и 2) имеет приводной вал 1 с профилированным кулачком 2 и клапанно-поршневой блок, состоящий из корпуса 3, поршня 4, установленного в расточке корпуса 3 с образованием рабочей камеры 5 и двух клапанов, всасывающего 6 и нагнетательного 7, соединяющих рабочую камеру 5 со всасывающим и нагнетательным коллекторами. На хвостовике поршня 4 на оси 8 установлен каток 9, постоянно прижатый посредством упругого элемента 10 к профилированному кулачку 2. В корпус поршневого насоса, имеющего все постоянные по конструктивному исполнению элементы, устанавливается (фиг.1) приводной вал 1 с технологическим эксцентриком 2, обеспечивающим синусоидальный закон движения поршня 4. В качестве привода поршневого насоса используется асинхронный электродвигатель, допускающий падение числа оборотов при возрастании нагрузки. Снятие индикаторной диаграммы производится при 10% нагрузке насоса (см. фиг. 3) при помощи датчиков давления, присоединенных к полости цилиндра и осциллографа. Расшифровка индикаторной диаграммы выявила два участка: участок 0 - соответствует циклу вытеснения, а участок - 2 - циклу заполнения рабочей камеры 5. Из-за неравномерности подачи давление в цилиндре p"2ц и p"1ц колеблется около средних значений р2ц и р1ц. По индикаторной диаграмме выявляются характерные участки изменения давления в цилиндре. Участок ао соответствует запаздыванию всасывающего клапана на протяжении угла к1. На этом участке задерживается возрастание давления в цилиндре. Участок de характеризует задержку падения давления из-за запаздывания нагнетательного клапана на протяжении угла к2. Участок bc характеризует сжатие жидкости в процессе роста давления, при котором открывается нагнетательный клапан 7. Процессу сжатия соответствует угол сжатия x2, определяемый сжатием жидкости в полезном и мертвых объемах рабочей камеры 5. На участке cd жидкость вытесняется из цилиндра. После закрытия нагнетательного клапана 7 в точке е и расширения жидкости, оставшейся в цилиндре (участок eg соответствует расширению мертвого объема), в точке g открывается всасывающий клапан 6 и на участке ga цилиндр заполняется новой жидкостью. Во время подъема клапанов 6 и 7 в точках с и g в цилиндре имеют место затухающие колебания давления. По результатам исследования индикаторной диаграммы изготовляется приводной вал 1 с профилированным кулачком 2, имеющим участки профиля с нулевым перемещением, скоростью и ускорением поршня равные углам запаздывания всасывающего к1 и нагнетательного к2 клапанов. Полученный приводной вал 1 устанавливается в корпус 3 поршневого насоса (см. фиг.2). Индикаторная диаграмма полученного, таким образом, насоса имеет измененный вид (см. фиг. 4). На участках ab и de на углах поворота к1 и к2 происходит стабилизация давления. Участки bc и eg имеют более крутой вид. Клапанам 6 и 7 поршневого насоса присуще свойство запаздывания (см фиг. 5) из-за отсутствия жесткой связи с поршнем 4. Момент закрытия клапанов отстает от момента прохождения поршнем 4 через мертвые точки при изменении направления его движения. График z = f( ) движения клапанов соответствует графику подачи однопоршневого насоса Q = f( ) (см. фиг.6). Из-за запаздывания посадки нагнетательного клапана 7, график движения которого О"AB", всасывающий клапан 6 открывается в точке B" вместо мертвой точки В. Равным образом из-за запаздывания посадки всасывающего клапана 6, график движения которого B"CD", нагнетательный клапан 7 открывается в точке D" вместо мертвой точки D. Нулевое перемещение, скорость и ускорение поршня 4, равные указанным углам запаздывания всасывающего 6 и нагнетательного 7 клапанов, обеспечивается участками профиля кулачка 2 приводного вала 1 (см. фиг.2). Из графика Q = f( ) (фиг.6) следует вывод об отсутствии перетечек рабочей жидкости в момент запаздывания клапанов к1 и к2 .Класс F04B9/04 с кулачками, эксцентриками, пальцами в пазу
кулисно-поршневой насос - патент 2511987 (10.04.2014) | |
устройство для привода плунжера топливного насоса высокого давления с кривошипно-ползунным механизмом - патент 2488014 (20.07.2013) | |
эксцентриковый вал - патент 2432505 (27.10.2011) | |
устройство для привода плунжерного насоса - патент 2431763 (20.10.2011) | |
приводная часть насоса - патент 2324069 (10.05.2008) | |
привод многоцилиндрового насоса - патент 2307952 (10.10.2007) | |
плунжерный насос - патент 2204735 (20.05.2003) | |
насос поршневой регулируемый - патент 2169860 (27.06.2001) | |
многофункциональная силовая установка модульного типа - патент 2164304 (20.03.2001) | |
поршневой насос - патент 2067214 (27.09.1996) |