способ определения коэффициентов передачи преобразователей частоты
Классы МПК: | G01R27/28 для измерения затухания, усиления, сдвига фаз или производных от них характеристик четырехполюсников, например двухканальных схем; для измерения переходных характеристик |
Автор(ы): | Елизаров Альберт Степанович[BY] |
Патентообладатель(и): | Минский радиотехнический институт (BY) |
Приоритеты: |
подача заявки:
1991-06-26 публикация патента:
27.02.1995 |
Использование: проектирование измерителей коэффициентов передачи преобразователей частоты. Цель: упрощение способа путем исключения измерений на промежуточной частоте. Сущность изобретения: использование второго опорного преобразователя частоты исключает необходимость проведения измерений на промежуточной частоте, требующих для своей реализации применения дополнительного измерительного оборудования. 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТОВ ПЕРЕДАЧИ ПРЕОБРАЗОВАТЕЛЕЙ ЧАСТОТЫ, заключающийся в преобразовании выходного сигнала промежуточной частоты исследуемого преобразователя в СВЧ-сигнал, частота которого равна частоте сигнала на его входе, с помощью обратновключенного первого опорного преобразователя частоты и измерении с помощью векторного анализатора СВЧ-цепей модуля и фазы суммарного коэффициента передачи исследуемого и первого опорного преобразователей частоты, отличающийся тем, что, с целью упрощения способа путем исключения измерений на промежуточной частоте дополнительно измеряют модуль и фазу суммарного коэффициента передачи исследуемого и второго опорного преобразователя частоты, включаемого вместо первого опорного преобразователя частоты, а затем измеряют модуль и фазу суммарного коэффициента передачи первого опорного преобразователя частоты, включаемого в прямом направлении, и второго опорного преобразователя частоты, включаемого в обратном направлении, и определяют модуль и фазу коэффициентов передачи соответственно исследуемого преобразователя частоты K1 и 1, первого опорного преобразователя K2 и 2 а также второго опорного преобразователя частоты K3 и 3 по формуламгде - модуль, ДБ, и фаза суммарного коэффициента передачи исследуемого и первого опорного преобразователей частоты;
- модуль, дБ, и фаза суммарного коэффициента передачи исследуемого и второго опорного преобразователей частоты;
- модуль, дБ, и фаза суммарного коэффициента передачи первого и второго опорных преобразователей частоты.
Описание изобретения к патенту
Изобретение относится к электрорадиоизмерениям и может быть использовано для измерения коэффициентов передачи СВЧ-четырехполюсников с преобразованием частоты. Известны способы и устройства для измерения на СВЧ коэффициентов передачи преобразователей частоты как с фиксированной промежуточной частотой [1] , так и с фиксированной частотой гетеродина [2]. Однако эти способы, обеспечивая прямое измерение коэффициентов передачи преобразователей частоты, приводят к усложнению применяемых для этой цели векторных анализаторов СВЧ-цепей, поскольку выход анализатора, к которому подключается вход исследуемого преобразователя частоты, должен представлять собой СВЧ-цепь, а вход анализатора, к которому подключается выход преобразователя частоты, цепь промежуточной частоты. Наиболее близким по технической сущности к предлагаемому способу является способ определения коэффициентов передачи четырехполюсников с преобразованием частоты [3], заключающийся в том числе в преобразовании выходного сигнала промежуточной частоты исследуемого преобразователя в СВЧ-сигнал, частота которого равна частоте сигнала на выходе анализатора СВЧ-цепей, с помощью обратновключенного опорного преобразователя частоты. Этот сигнал может быть подан на вход анализатора, который в этом случае будет измерять сумму коэффициентов передачи исследуемого иопорного преобразователей частоты без каких-либо схемных усложнений. Однако данный способ, позволяя избежать усложнения схемы векторного анализатора СВЧ-цепей, тем не менее требует проведения измерений на промежуточной частоте, поскольку коэффициент передачи опорного преобразователя частоты в общем случае неизвестен. Это усложняет осуществление способа, так как требует применения дополнительных генератора промежуточной частоты, делителя выходного сигнала этого генератора и других элементов. Цель изобретения - упрощение способа путем исключения измерений на промежуточной частоте. Для этого в известном способе определения коэффициентов передачи преобразователей частоты, заключающемся в преобразовании выходного сигнала промежуточной частоты исследуемого преобразователя в СВЧ-сигнал, частота которого равна частоте сигнала на его входе, с помощью обратновключенного первого опорного преобразователя частоты и измерении с помощью векторного анализатора СВЧ-цепей модуля и фазы суммарного коэффициента передачи исследуемого и первого опорного преобразователей частоты, дополнительно измеряют модуль и фазу суммарного коэффициента передачи исследуемого и второго опорного преобразователей частоты, включаемого вместо первого опорного
преобразователя частоты, а затем измеряют модуль и фазу суммарного коэффициента передачи первого опорного преобразователя частоты, включаемого в прямом направлении, и второго опорного преобразователя частоты, включаемого в обратном направлении, и определяют модуль и фазу коэффициентов передачи исследуемого преобразователя частоты К1 и 1, первого опорного преобразователя частоты К2 и 2, а также второго опорного преобразователя частоты К3 и 3 по формулам:
K1 = (дБ),
K2 = (дБ),
K3 = (дБ),
1 =
2 =
3 = Где K1 и 1 - модуль (в дБ) и фаза суммарного коэффициента передачи исследуемого и первого опорного преобразователя частоты;
K2 и 2 - модуль (в дБ) и фаза суммарного коэффициента передачи исследуемого и второго опорного преобразователей частоты;
K3 и 3 - модуль (в дБ) и фаза суммарного коэффициента передачи первого и второго опорных преобразователей частоты. Таким образом, в предлагаемом способе используется второй опорный преобразователь частоты и исключается в связи с этим необходимость проведения измерений на промежуточной частоте, требующих для своей реализации применения дополнительного измерительного оборудования. Это предельно упрощает способ, позволяя осуществить его с помощью типового векторного анализатора СВЧ-цепей. Сравнение заявляемого решения с другими техническими решениями показывает, что прямое и обратное включение двух преобразователей частоты для реализации так называемого двойного когерентного преобразования частоты уже известно и используется в прототипе [3] для измерения суммарного коэффициента передачи их. Кроме того, благодаря использованию еще одного преобразователя частоты, измерению суммарных коэффициентов передачи комбинаций из прямо- и обратновключенных всех трех преобразователей частоты и определению модуля и фазы коэффициента передачи каждого преобразователя в отдельности определяется коэффициент передачи каждого преобразователя частоты без проведения дополнительных измерений на промежуточной частоте. На фиг. 1-3 представлены структурные схемы измерительного тракта, осуществляющие совместно с типовым векторным анализатором СВЧ-цепей 1 предлагаемый способ. Измерительный тракт включает в себя гетеродин 2, который является общим для всех преобразователей частоты, исследуемый 3, первый опорный 4 и второй опорный 5 преобразователи частоты (смесители). Способ определения коэффициентов передачи преобразователей частоты реализуется следующим образом. Первоначально векторный анализатор СВЧ-цепей калибруется в соответствии с принятым алгоритмом измерения комплексных коэффициентов передачи. Калибровка обеспечивает последующее прямое измерение суммарных коэффициентов передачи различных комбинаций из исследуемого и опорных преобразователей частоты. Процесс измерения включает в себя три этапа. На первом этапе, применяя схему измерительного тракта, приведенную на фиг. 1, измеряют с помощью векторного анализатора 1 модуль и фазу суммарного коэффициента передачи исследуемого 3 и первого опорного 4 преобразователей частоты. При этом исследуемый 3 преобразователь частоты включается в прямом направлении и на его вход подается СВЧ-сигнал частоты fс с выхода анализатора. Для обратного включения первого опорного 4 преобразователя частоты необходимо соединить выходы промежуточной частоты fпр обоих преобразователей между собой, а общий гетеродин 2 подключить к входам сигнала частоты fг преобразователей. В этом случае опорный преобразователь частоты можно считать линейным взаимным четырехполюсником, возвращающим частоту сигнала на входе анализатора к значению fс (что и составляет суть двойного когерентного преобразования частоты). Следовательно, результаты измерений модуля K1 и фазы 1суммарного коэффициента передачи, полученные на первом этапе, можно представить как
K1 = К1 + К2 (дБ), (1)
1 = 1 + 2, (2) где К1 и 1 - модуль (в дБ) и фаза коэффициента передачи исследуемого 3 преобразователя частоты;
К2 и 2 - модуль (в дБ) и фаза коэффициента передачи первого опорного 4 преобразователя частоты. На втором этапе, применяя схему измерительного тракта, приведенную на фиг.2, измеряют с помощью векторного анализатора 1 модуль и фазу суммарного коэффициента передачи исследуемого 3 и второго опорного 5 преобразователей частоты. При этом второй опорный 5 преобразователь частоты включается вместо первого опорного 4 преобразователя в обратном направлении, а исследуемый 3 преобразователь остается включенным по прежней схеме. Результаты измерений модуля K2 и фазы 2 суммарного коэффициента передачи, полученные на втором этапе, можно представить как
K2 = К1 + К3 (дБ), (3)
2 = 1 + 2 , (4) где К3, 3 - модуль (в дБ) и фаза коэффициента передачи второго опорного 5 преобразователя частоты. На заключительном третьем этапе, применяя схему измерительного тракта, приведенную на фиг.3, измеряют модуль и фазу суммарного коэффициента передачи первого 4 и второго 5 опорных преобразователей частоты. При этом первый опорный 4 преобразователь частоты включается вместо исследуемого 3 преобразователя в прямом направлении, а второй опорный 5 преобразователь остается включенным по прежней схеме. Результаты измерений модуля K3 и фазы 3 суммарного коэффициента передачи, полученные на третьем этапе, можно представить как
K3 = К2 + К3 (дБ), (5)
3 = 2 + 3 , (6)
Совместное решение уравнений (1), (3) и (5) дает следующие математические выражения для модулей коэффициентов передачи исследуемого и опорных преобразователей частоты:
K1 = (дБ), (7)
K2 = (дБ), (8)
K3 = (дБ), (9)
Аналогично из уравнений (2), (4) и (6) получаем для фаз коэффициентов передачи этих преобразователей частоты:
1 = (10)
2 = (11)
3 = (12)
Использование предлагаемого способа определения коэффициентов передачи преобразователей частоты обеспечивает по сравнению с существующими способами следующие преимущества:
Благодаря исключению необходимости проведения измерений на промежуточной частоте предельно упрощается как сама измерительная установка, так и алгоритмы проведения измерений и обработки их результатов. Что касается алгоритма проведения измерений, то он полностью соответствует алгоритму функционирования типового векторного анализатора СВЧ-цепей при измерении комплексных коэффициентов передачи четырехполюсников. Что же касается алгоритма обработки результатов измерений, то с учетом полной аналогии между выражениями (7)-(9) и (10)-(12) программа функционирования векторного анализатора лишь незначительно усложняется за счет дополнения ее унифицированной подпрограммой вычисления К1-К3 и 1- 3. Многоэтапность процесса измерения К1 и 1 проявляется лишь тогда, когда исследуемым является только преобразователь частоты 3, а преобразователи 4 и 5 - некоторые опорные (образцовые) преобразователи, как это принято по терминологии прототипа [3]. На самом же деле в качестве преобразователей 4 и 5 также могут использоваться исследуемые преобразователи, так как знать К2, К3, 2 и 3 не обязательно, а определяются они точно так же, как и К1 и 1. Потому, если необходимо измерить коэффициенты передачи у нескольких (или даже у серии) преобразователей частоты, то применение предлагаемого способа обеспечит ту же производительность измерений, что и для четырехполюсников без преобразования частоты.
Класс G01R27/28 для измерения затухания, усиления, сдвига фаз или производных от них характеристик четырехполюсников, например двухканальных схем; для измерения переходных характеристик