термоэлектрический генератор

Классы МПК:H01L35/02 конструктивные элементы
Автор(ы):, ,
Патентообладатель(и):Отделение высокотемпературного преобразования энергии Института проблем энергосбережения АН Украины (UA)
Приоритеты:
подача заявки:
1991-04-01
публикация патента:

Использование: в качестве источника электроэнергии малой мощности для питания оборудования автономных океанических буев. Сущность изобретения: термоэлектрический генератор для преобразования тепловой энергии океана в электрическую содержит термоэлектрическую батарею, включающую горячий и холодный спаи, аккумулятор теплоты, имеющий тепловой контакт с горячим спаем термоэлектрической батареи, балластную емкость, расположенную над холодным спаем термоэлектрической батареи, выполненную с открытой нижней частью и снабженную управляемым клапаном, связывающим верхнюю часть емкости с окружающей средой. 1 ил.
Рисунок 1

Формула изобретения

ТЕРМОЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР для преобразования тепловой энергии океана в электрическую, включающий термоэлектрическую батарею, содержащую горячий и холодный спаи, аккумулятор теплоты, имеющий тепловой контакт с горячим спаем термоэлектрической батареи, отличающийся тем, что, с целью повышения КПД за счет исключения затрат энергии на собственные нужды, в него дополнительно введена балластная емкость, расположенная над холодным спаем термоэлектрической батареи, выполненная с открытой нижней частью и снабженная управляемым клапаном, связывающим верхнюю часть емкости с окружающей средой.

Описание изобретения к патенту

Изобретение относится к области термоэлектрического преобразования энергии, а именно к термоэлектрическим генераторам (ТЭГ), предназначенным для обеспечения электрической энергией океанических буев за счет использования естественных перепадов температур между поверхностными и глубинными слоями океана.

Основная проблема при создании таких ТЭГ состоит в необходимости обеспечить тепловое сопряжение спаев термоэлектрической батареи (ТЭБ) с водой поверхностных и глубинных слоев, расстояние между которыми по вертикали при использовании максимальной разности температур (полностью развитого термоклина) достигает 1000 м и более.

Известен ТЭГ, в котором горячий и холодный спаи размещаются в поверхностных слоях океана, а охлаждение холодного спая осуществляется путем прокачки воды из глубинных слоев насосом с электропроводом [1].

Известен также ТЭГ, в котором тепловое сопряжение между холодным спаем ТЭБ и водой глубинных слоев океана осуществляется в процессе фазовых превращений промежуточного теплоносителя, а для возврата конденсата этого теплоносителя в поверхностные слои также используется насос с электроприводом или осмотический насос [2].

Известен способ эксплуатации ТЭГ, заключающийся в нагреве горячего спая ТЭБ в поверхностных слоях океана и охлаждении холодного спая ТЭБ теплоносителем, перемещаемым из глубинных слоев океана циркуляционным насосом.

Недостаток известных устройств и способа их эксплуатации связан с затратами части преобразуемой тепловой (осмотический насос) или полученной электрической (механический насос с электроприводом) энергии на обеспечение циркуляции охлаждающего теплоносителя.

Наиболее близок по технической сущности к изобретению ТЭГ [3], выбранный в качестве прототипа и включающий ТЭБ, содержащую горячий и холодный спаи, систему трубопроводов для циркуляции теплоносителя, аккумулятор теплоты, имеющий тепловой контакт с горячим спаем ТЭБ. Способ эксплуатации заключается в зарядке аккумулятора теплоты, нагреве горячих спаев ТЭБ и охлаждении холодных спаев водой глубинных слоев океана.

Недостаток этих устройств и способа их эксплуатации связан с необходимостью затрат энергии на собственные нужды. Эти затраты выражаются в виде расхода электроэнергии на привод насоса (части электроэнергии, генерируемой ТЭГ) или в потере части располагаемого перепада температур между поверхностными и глубинными слоями океана, пригодными для преобразования в электрическую энергию, если циркуляцию теплоносителя осуществляют за счет осмотического насоса. В обоих случаях затраты энергии на собственные нужды снижают общий КПД ТЭБ.

Цель изобретения - повышение КПД ТЭГ за счет исключения затрат энергии на собственные нужды, связанные с необходимостью обеспечения циркуляции охлаждающего теплоносителя между глубинными слоями океана и холодным спаем ТЭБ.

Поставленная цель достигается тем, что в генератор, включающий ТЭБ, содержащую горячий и холодный спаи, аккумулятор теплоты, имеющий тепловой контакт с горячим спаем ТЭБ, согласно изобретению дополнительно введены балластная емкость, расположенная над холодным спаем ТЭБ, выполненная с открытой нижней частью и снабженная управляемым клапаном, связывающим верхнюю часть емкости с окружающей средой.

На чертеже показан предлагаемый ТЭГ, где 1 - аккумулятор теплоты, 2 - балластная емкость, 3 - управляемый клапан, связывающий верхнюю часть балластной емкости с окружающей средой, 5 - холодный спай ТЭБ, 6 - ТЭБ, 7 - горячий спай ТЭБ.

Генератор содержит аккумулятор 1 теплоты, имеющий тепловой контакт с горячим спаем 7 ТЭБ 6. Балластная емкость 2 расположена таким образом, что ее открытая часть 4 находится непосредственно над холодным спаем 5 ТЭБ 6. В балластной емкости 2 имеется управляемый клапан 3, связывающий верхнюю часть этой емкости с окружающей средой.

Генератор работает следующим образом. В исходном состоянии ТЭГ погружен в поверхностный слой океана и находится в состоянии покоя за счет нулевой плавучести. Нулевая плавучесть обеспечивается благодаря наличию в верхней части балластной емкости 2 некоторого количества газа (в исходном состоянии воздуха). В поверхностном слое океана аккумулятор 1 теплоты заряжается за счет теплоты этого слоя. После зарядки аккумулятора управляемый клапан 3 открывается газ, содержащийся в верхней части балластной емкости 2, стравливается в окружающую среду и балластная емкость заполняется водой - принимает балласт. После приема балласта плавучесть ТЭГ уменьшается и он погружается в глубинные слои океана. Соотношение массы и объема (водоизмещения) ТЭГ таковы, что он с принятым балластом имеет нулевую плавучесть на определенной (заданной) глубине за счет увеличения плотности окружающей воды. В процессе погружения при открытом клапане 3 происходит вентиляция балластной емкости 2 - тепловая вода поверхностных слоев заменяется холодной водой глубинных слоев. После этого управляемый клапан 3 закрывается.

Известно, что в глубинных слоях океана температура воды стабилизирована на уровне 4оС. Следовательно, в глубинных слоях океана горячий спай 7 ТЭБ нагревается от аккумулятора 1 теплоты до температуры, равной температуре поверхностного слоя, а холодный 5 охлаждается водой глубинных слоев, что приводит к возникновению термоЭДС на спаях ТЭБ. При охлаждении спая 5 ТЭБ водой глубинных слоев эта вода нагревается за счет отведенной теплоты. При нагреве воды глубинных слоев океана, насыщенной углекислым и некоторыми другими газами, происходит выделение этих газов. Выделившиеся газы накапливаются в балластной емкости 2, которая своей открытой частью 4 расположена над холодным спаем 5 ТЭБ. При накоплении газов вода вытесняется из балластной емкости 2 через ее нижнюю часть. Плавучесть ТЭГ увеличивается - ТЭГ поднимается в поверхностные слои океана. За время, в течении которого ТЭГ находился в глубинных слоях океана, аккумулятор теплоты зарядился теплотой низкого потенциала. При всплытии в поверхностные слои ТЭБ генерирует ЭДС до момента зарядки аккумулятора теплоты. Для повторения цикла необходимо открыть управляемый клапан 3 и стравить газ в окружающую среду.

Класс H01L35/02 конструктивные элементы

наноструктуры с высокими термоэлектрическими свойствами -  патент 2515969 (20.05.2014)
преобразователь энергии -  патент 2507635 (20.02.2014)
термоэлектрический элемент -  патент 2419919 (27.05.2011)
универсальная термоэлектрическая машина белашова -  патент 2414041 (10.03.2011)
компактные высокоэффективные термоэлектрические системы -  патент 2355958 (20.05.2009)
модульная рентгеновская трубка, а также способ изготовления такой модульной рентгеновской трубки -  патент 2344513 (20.01.2009)
датчик температуры -  патент 2327122 (20.06.2008)
устройство электрода и ячейки -  патент 2265677 (10.12.2005)
термоэлектрический генератор -  патент 2191447 (20.10.2002)
полупроводниковое длинномерное изделие для термоэлектрических устройств -  патент 2181516 (20.04.2002)
Наверх