способ получения оксида кобальта

Классы МПК:C01G51/04 оксиды; гидроксиды 
Автор(ы):, , , , , ,
Патентообладатель(и):Хохлов Олег Игоревич,
Новиков Леонид Герасимович,
Подвальный Лев Соломонович,
Пименов Леонид Иванович,
Василенко Павел Иванович,
Пьянков Анатолий Иванович,
Щеблыкина Алевтина Николаевна
Приоритеты:
подача заявки:
1992-07-07
публикация патента:

Изобретение относится к технологии получения оксида кобальта. Способ включает прокаливание гидроксида кобальта при 800-1000°С, обработку полученного оксида при 75-85°С (1-4) мас.%-ным раствором хлорида аммония, взятым в объемном соотношении к твердому оксиду кобальта (4-8):1. Полученный продукт фильтруют, подвергают промывке водой и сушат. Причем обработку оксида раствором хлорида аммония осуществляют в течение 1-5 ч. Способ позволяет получить оксид кобальта с суммарным содержанием щелочных металлов 0,020-0,025 мас. %, содержание серы менее 0,030 мас.%. 1 з.п. ф-лы, 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

1. СПОСОБ ПОЛУЧЕНИЯ ОКСИДА КОБАЛЬТА, включающий прокаливание гидроксида кобальта, вывод конечного продукта, отличающийся тем, что прокаливание осуществляют при 800 1000oС, после чего полученный оксид подвергают обработке при 75 85oС 1 4%-ным раствором хлорида аммония, взятым в объемном соотношении к твердому оксиду кобальта (4 8) 1, после чего продукт фильтруют, промывают водой и сушат.

2. Способ по п.1, отличающийся тем, что обработку оксида кобальта осуществляют в течение 1 5 ч.

Описание изобретения к патенту

Изобретене относится к цветной металлургии, в частности к способам получения оксида кобальта, и может быть использовано в твердосплавной промышленности, а также в отраслях, связанных с применением реактивного оксида кобальта квалификации "ч" по ГОСТ 4467-79 (химическая технология).

Известен способ получения оксида кобальта, соответствующего по содержанию основного металла и примесей требованиям ГОСТ 18671-73 [1] Способ включает насыщение содой гидроксида кобальта, прокалку, выщелачивание, фильтрацию и сушку полученного продукта.

Недостатком этого способа является повышенная доля щелочных металлов (К + Na > 0,9%) в конечном продукте.

Для получения оксида кобальта с низким содержанием щелочных металлов на всех предприятиях твердосплавной промышленности ведут разложение предварительно восстановленного оксида кобальта (ГОСТ 18671-73) в соляной или азотной кислотах, гидролитическую очистку от трехвалентного железа, выделение кобальта в виде оксалата (CoC2O4) и прокалку промытого осадка до оксида. После осаждения оксалата кобальта получают маточные растворы, содержащие 0,2-0,5 г/л Сo, которые направляют на доизвлечение кобальта осаждением в виде карбоната, сульфида или оксалата кобальта. При осаждении карбоната кобальта, осуществляемом нейтрализацией маточного раствора содой, конечное содержание кобальта составляет 0,07 г/л и более, что связано с образованием прочных аммиачных комплексов кобальта, удерживающих его в растворе. Осаждение кобальта сульфидом аммония позволяет получать растворы с содержанием 0,01-0,03 г/л кобальта [2]

Недостатками этого способа являются сложность технологической схемы из-за наличия большого количества операций: отстаивания, фильтрации, сушки, переработки вторичных продуктов и др. удорожающих процесс, а также высокий расход реагентов, в частности использование дорогостоящей и дефицитной щавелевой кислоты, необходимой для осаждения оксалата кобальта. Только затраты на щавелевую кислоту составляет 7% что соответствует 50% себестоимости за вычетом затрат на исходное сырье. Кроме того, известный способ не является экологически чистым, это объясняется тем, что в процессе растворения восстановленного оксида кобальта в азотной кислоте образуются токсичные газовые выделения, содержащие NO. Извлечение кобальта в оксид кобальта согласно известной технологии не превышает 90%

Наиболее близким к предлагаемому изобретению является способ получения оксида из гидроксида кобальта [3] включающий прокаливание исходного гидроксида Сo(OH)2 при 300-350оС в течение 20-40 мин в псевдоожиженном слое при скорости подачи воздуха 0,04-0,045 м/с. Для осуществления этого способа в электропечь на газораспределительную решетку загружают гидроксид кобальта, в печь подают воздух и проводят прокалку. После прокалки нагреватели отключают, печь охлаждают и выгружают конечный продукт.

Однако при реализации этого способа не происходит удаления (рафинирования) из исходного сырья щелочных металлов и серы. В результате чего полученный оксид кобальта не соответствует требованиям, предъявляемым в производстве твердых сплавов, а также к реактивному оксиду кобальта квалификации "ч" по ГОСТ 4467-79.

Целью предлагаемого изобретения является увеличение производительности процесса, удешевление себестоимости полученной продукции и повышение ее качества за счет снижения массовых долей щелочных металлов и серы до норм, удовлетворяющих требованиям, предъявляемым к конечному продукту (оксиду кобальта) как предприятиями твердосплавной промышленности (сумма К + Na < 0,02% SO4--< 0,1%), так и к реактивному кобальту квалификации "ч" по ГОСТ 4467-79.

Для этого в предлагаемом способе получения оксида кобальта при переработке кобальтсодержащего сырья пульпу, содержащую гидроксид кобальта, отфильтровывают, осадок прокаливают при 800-1000оС и обрабатывают в течение 1-5 ч при механическом перемешивании в 1-4 мас. водном растворе хлористого аммония, взятом в объемном соотношении к оксиду кобальта, равном (4-8):1, при 75-85оС, затем пульпу вновь отфильтровывают и осадок повторно обрабатывают водой для удаления механически увлеченных растворимых солей щелочных металлов и серы и сушат.

Отклонения условий от указанных значений влияют на массовые доли щелочных металлов и серы в готовом продукте и на структуре образующегося оксида.

Рассмотрим влияние основных факторов, влияющих на процесс.

Верхний предел температуры прокалки гидроксида равен 1000оС. Остальные параметры процесса взяты в оптимальных значениях.

В ходе исследований получен оксид кобальта хорошего качества: сумма щелочных металлов не превышает 0,015-0,02 мас. содержание серы менее 0,01% Извлечение кобальта в оксид (в готовый продукт) составляет 97,7%

Нижний предел температуры прокалки гидроксида кобальта равен 800оС. Остальные параметры процесса взяты в оптимальных значениях.

В ходе испытаний получен оксид кобальта хорошего качества: массовая доля суммы щелочных металлов (натрия и калия) составляла 0,020-0,025% серы меньше 0,020% Извлечение кобальта в оксид (в готовый продукт) находилась на уровне 97,9%

При температуре прокалки гидроксида кобальта, равной 1050оС (остальные параметры процесса взяты в оптимальных значениях), получен оксид кобальта с увеличенной массовой долей суммы щелочных металлов (натрия и калия) 0,04% содержание серы в нем превышало 0,04%

Извлечение кобальта в оксид кобальта 97,6-97,8%

При температуре прокалки гидроксида кобальта, равной 790оС (остальные параметры процесса взяты в оптимальных значениях), получен оксид кобальта худшего качества. Сумма массовых долей натрия и калия находится на уровне 0,05% содержание серы выше 0,04%

Извлечение кобальта в оксид кобальта 97,3-97,5%

Использование в предлагаемом способе обработки прокаленного гидроксида кобальта (1-4) мас.-ного водного раствора хлористого аммония в агрегате с механическим перемешиванием обеспечивает совместное удаление из оксида кобальта натрия, калия, серы (сульфат-иона) и других примесей, и тем самым отпадает необходимость в использовании соды для перевода серы в форму легко растворимого в воде сульфата натрия при прокалке гидроксида кобальта.

Обязательным условием для получения требуемого качества готового продукта является выбор оптимального объемного соотношения водного раствора хлористого аммония к оксиду кобальта (Ж:Т), которое колеблется в пределах (4-8): 1 при обработке прокаленного гидроксида. В ходе лабораторных испытаний предлагаемого способа установлено, что при этом соотношении массовые доли щелочных металлов (суммы натрия и калия) снижаются до 0,010-0,02% В ходе исследований показано, что для достижения требуемой глубины удаления вышеуказанных примесей необходимо обработку оксида кобальта вести при механическом перемешивании и температуре 75-85оС. В этом интервале температур удаление примесей идет наиболее полно, а извлечение кобальта в товарный продукт достигает 97,0-98,5%

Было найдено оптимальное время обработки, равное 1-5 ч, при котором достигается одновременное увеличение как извлечения кобальта в товарный продукт, так и повышение его качества.

Снижение времени обработки меньше 1 ч не обеспечивает достаточного перевода примесей в раствор, что резко ухудшает качество готового продукта.

Увеличение продолжительности обработки больше 5 ч, например 6 ч, неэкономично, так как эффективность удаления примесей в фильтрат остается на прежнем уровне.

Рассмотрим остальные верхние и нижние оптимальные пределы параметров для реализации способа, а также их значения за этими пределами.

Верхний предел по концентрации водного раствора хлористого аммония равен 4 мас. Остальные параметры процесса взяты в оптимальных значениях.

В ходе испытаний получен оксид кобальта хорошего качества: сумма щелочных металлов составляет 0,015-0,02% содержание серы 0,010% извлечение кобальта в оксид (в готовый продукт) 98,6-98,7%

Нижний предел по концентрации водного раствора хлористого аммония равен 1% Остальные параметры процесса взяты в оптимальных значениях.

В ходе испытаний получен оксид кобальта хорошего качества: сумма контролируемых щелочных металлов составила 0,018-0,02% серы 0,015% извлечение кобальта в оксид находится в пределах 98,7-98,8%

Нижний предел объемного соотношения водного раствора хлористого аммония и твердого оксида кобальта принят 4:1. Остальные параметры процесса взяты в оптимальных значениях.

В ходе испытаний получен оксид кобальта хорошего качества: сумма щелочных металлов составляет 0,02-0,025% серы 0,012% извлечение кобальта в оксид (в готовый продукт) 98,3%

Верхний предел объемного соотношения водного раствора хлористого аммония и твердого оксида кобальта равен 8:1.

Остальные параметры оптимальны. В ходе испытаний получен оксид кобальта хорошего качества: массовые доли суммы щелочных металлов составляют 0,008-0,02, серы 0,010% Извлечение кобальта в готовый продукт 98,0%

Верхний предел температуры обработки в водном растворе хлористого аммония составил 85оС. Остальные параметры способа выбраны аналогичными предыдущему примеру.

В ходе исcледований получен оксид кобальта хорошего качества: массовые доли суммы щелочных металлов составляли 0,009-0,01% серы 0,010% Извлечение кобальта в оксид в среднем равно 98,4%

Нижний предел температуры обработки оксида кобальта составил 75оС.

Остальные параметры способа выбраны аналогичными предыдущему примеру. В ходе испытаний получен оксид кобальта хорошего качества: сумма концентраций щелочных металлов составила 0,009-0,015% серы 0,012% Среднее извлечение кобальта в оксид 98,5%

Нижний предел температуры обработки оксида кобальта в водном растворе хлористого аммония составил 75оС, концентрация водного раствора хлористого аммония выше верхнего предела (5 мас.). Остальные параметры способа выбраны аналогичными предыдущему примеру.

В ходе испытаний получен продукт хорошего качества: массовые доли суммы щелочных металлов составили 0,01-0,015% серы 0,012% Извлечение кобальта в оксид меняется в пределах 98,5-98,6%

Из примера видно, что повышение концентрации водного раствора хлористого аммония до 5 мас. не приводит к повышению сортности продукта по сравнению с качеством оксида кобальта, полученного при концентрации водного раствора хлористого аммония, равной 4 мас.

Нижний предел времени обработки оксида кобальта в водном растворе хлористого аммония равен 1 ч. Остальные параметры способа выбраны в оптимальных значениях.

В ходе испытаний получен продукт хорошего качества: массовые доли суммы щелочных металлов составили 0,015-0,025% серы 0,018-0,02% Извлечение кобальта в оксид в среднем равно 98,7%

Верхний предел по времени проведения обработки составил 5 ч. Остальные параметры способа выбраны аналогичными предыдущему примеру.

В ходе испытаний получен оксид кобальта хорошего качества: массовые доли суммы щелочных металлов составили 0,008-0,010% серы 0,010% Извлечение кобальта в оксид находится на уровне 98,70-89,75%

Нижний предел времени обработки оксида кобальта в водном растворе хлористого аммония принят за 1 ч, температура проведения процесса 86оС, т.е. выше верхнего уровня.

В ходе испытаний получен оксид кобальта хорошего качества: концентрация суммы щелочных металлов составила 0,009-0,01% серы 0,010%

Из примера видно, что повышение температуры обработки до 86оС не улучшило качество оксида кобальта по контролируемым компонентам по сравнению с его сортностью при температуре, равной 85оС.

При осуществлении способа при условиях: времени обработки выше верхнего уровня (5,5 ч) и температуре ниже предельного значения (74оС) получен оксид кобальта неудовлетворительного качества: массовые доли суммы щелочных металлов превысили 0,03% серы 0,033%

В ходе испытаний способа при условиях: концентрация водного раствора хлористого аммония при обработке оксида кобальта 4 мас. объемное соотношение данного раствора и оксида кобальта, равное 9, (остальные параметры оптимальные) получен продукт хорошего качества: концентрация суммы щелочных металлов составила 0,009-0,02% серы 0,012% Извлечение кобальта в оксид (в готовый продукт) 96,1%

Из примера видно, что повышение объемного соотношения водного раствора хлористого аммония и твердого оксида кобальта до 9:1 не улучшает качества конечного продукта по сравнению с качеством оксида кобальта, полученного обработкой раствором хлористого аммония, взятом в объемном соотношении к твердому оксиду кобальта, равном 8:1.

Оксид кобальта, полученный при максимальном объемном соотношении водного раствора хлористого аммония и твердого оксида 8:1 с массовой концентрацией NH4Cl ниже минимального уровня (0,9 мас.), неудовлетворительного качества: массовая доля суммы щелочных металлов составила более 0,03% серы 0,038%

Повышение концентрации водного раствора хлористого аммония до 5 мас. и выше по существу не повышает качества продукта по сравнению с обработкой 4 мас.-ным раствором.

Снижение объемного соотношения раствора хлористого аммония и оксида кобальта до 3: 1 и меньше приводит к получению бракованного продукта: содержание в нем суммы щелочных металлов выше 0,3% серы 0,041%

Рост объемного соотношения раствора хлористого аммония и оксида кобальта до 9: 1 и выше не дает какого-либо снижения контролируемых элементов по сравнению с продуктом, полученным обработкой вышеуказанным раствором в объемном соотношении с оксидом кобальта, равном 8:1.

Снижение температуры обработки до 74оС и ниже приводит к получению товарного продукта с повышенной концентрацией суммы щелочных металлов (больше 0,030%).

Увеличение температуры обработки выше 86оС несущественно улучшает качество оксида кобальта (среднее содержание суммы щелочных металлов 0,01% серы 0,010%) по сравнению с обработкой при 85оС. В этом случае требуется повышенный расход энергоресурсов, что вызывает удорожание способа.

Снижение продолжительности обработки ниже 55 мин не приводит к получению требуемого качества оксидов кобальта: содержание суммы щелочных металлов более 0,04% и серы более 0,041%

Увеличение продолжительности обработки более 5,0 ч незначительно повышает качество конечного продукта (массовые доли щелочных металлов в среднем составили 0,008%).

Способ прост в осуществлении, не требует специальной подготовки рабочих, сложного оборудования.

Предлагаемый способ получения оксида кобальта обладает новизной и изобретательским уровнем, так как при проведении поиска по источникам патентной и научно-технической документации не выявлены известные технические решения, в которых оксид кобальта был бы получен прокалкой гидроксида кобальта при 800-1000оС с последующей обработкой при механическом перемешивании в 1-4 мас.-ном растворе хлористого аммония, взятом в объемном соотношении к оксиду кобальта, равном (4-8): 1, при 75-85оС в течение 1-5 ч. После чего продукт фильтруют и подвергают повторной обработке водой.

Предлагаемый способ может быть широко применим в промышленности, возможно многократное его воспроизводство.

На фиг. 1 изображена существующая схема получения оксида кобальта в твердосплавной промышленности; на фиг. 2 схема осуществления известного способа получения реактивного оксида кобальта по ГОСТ 4467-79 квалификации "ч"; на фиг. 3 схема осуществления предлагаемого способа.

Предлагаемый способ получения оксида кобальта реализуется следующим образом.

Гидроксид кобальта, содержащий, кобальта 57,0-59,0; натрия 0,6-0,9; серы 0,8-1,5; калия 0,1-0,4 и др. без добавления кальцинированной соды прокаливают в печи при 800-1000оС в течение 6,0-10,0 ч.

Полученный оксид кобальта состава, кобальта 70,0-72,5; натрия 1,14-1,60; калия 0,2-0,6; серы 1,2-1,6 и др. обрабатывают в реакторе, оборудованном устройством для механического перемешивания, в 1-4 мас.-ном растворе хлористого аммония, взятом в объемном соотношении к оксиду кобальта, равном (4-8): 1, для совместного удаления солей щелочных металлов и серы при 75-85оС в течение 1-5 ч. По окончании обработки оксид отфильтровывают, осадок подвергают повторной обработке водой от остаточного содержания щелочных металлов и сульфат-ионов и прокаливают в печи для удаления влаги.

Получаемый оксид кобальта имеет следующий состав, кобальта 73,4-73,6; никеля 0,10-0,15; железа 0,02-0,03, меди 0,005-0,007; серы 0,010-0,02; натрия 0,008-0,015; калия 0,001-0,003; марганца 0,001-0,008; кальция 0,02-0,03; азота следы, магния 0,007-0,009; цинка 0,010-0,020.

Извлечение кобальта в оксид (в готовый продукт) составляет 98,6-98,8%

П р и м е р 1. Гидроксид кобальта, содержащий: 57,82% кобальта; 0,56% натрия; 1,12% серы; 0,35% калия, без добавления кальцинированной соды прокаливали на поду муфельной печи при 950оС в течение 5 ч.

Получили оксид кобальта, содержащий, кобальта 72,10; натрия 1,15; калия 0,55; серы 1,25 и др. Его обрабатывали в реакторе, оборудованном механическим перемешиванием, объемом 6 м3 в 4 мас.-ном растворе хлористого аммония. Объемное соотношение раствора к оксиду кобальта было равным 5:1. Температура обработки равна 80оС, время 5 ч. Оксид кобальта отфильтровывали, обрабатывали умягченной водой и просушивали.

Полученный продукт содержал, мас. кобальта 73,55; никеля 0,15; железа 0,03; меди 0,0058; серы 0,010; натрия 0,009; калия 0,0019; марганца 0,001; кальция 0,03; азота следы; магния 0,0088; цинка 0,015.

Извлечение кобальта в оксид (в готовый продукт) 98,6%

П р и м е р 2. Гидроксид кобальта, содержащий: 59,1% кобальта; 0,85% натрия; 0,28% калия и др. компоненты, прокаливали без соды на поду муфельной печи при 1000оС в течение 4 ч.

Получаемый оксид кобальта, содержащий, кобальта 73,1; натрия 1,14; серы 1,28 и др. элементы, обрабатывали в реакторе с механическим перемешиванием в 3 мас.-ном растворе хлористого аммония, взятом в объемном соотношении 6:1 к оксиду кобальта при 75оС в течение 2 ч. После фильтрации, повторной обработки и сушки конечный продукт содержал, мас. кобальта 73,6; никеля 0,15; железа 0,022; меди 0,006; серы 0,012; натрия 0,010; калия 0,004; марганца 0,007; кальция 0,025; азота следы; магния 0,0071; цинка 0,020.

Извлечение кобальта в оксид (в готовый продукт) 98,8%

Полученный оксид кобальта по качеству соответствует квалификации "ч" по ГОСТ 4467-79, что позволяет его использовать одновременно как в твердосплавной промышленности, так и в качестве реактивного оксида квалификации "ч".

Класс C01G51/04 оксиды; гидроксиды 

магнитные наночастицы для применения при гипертермии, их приготовление и применение в магнитных системах для фармакологического использования -  патент 2481125 (10.05.2013)
литий-кобальт-оксидный материал и способ его приготовления -  патент 2473466 (27.01.2013)
стабилизатор ферментативной активности пероксидазы -  патент 2445271 (20.03.2012)
устройство и способ получения соединений путем осаждения -  патент 2437700 (27.12.2011)
гидроксид кобальта со(он)2 -  патент 2243164 (27.12.2004)
способ получения мелкодисперсного порошка твердых растворов гидроксидов никеля и кобальта и продукт для электрохимических производств, получаемый по этому способу -  патент 2226179 (27.03.2004)
способ получения труднорастворимых гидроокислов металлов -  патент 2143997 (10.01.2000)
порошковый кобальтовый компонент и способ его получения -  патент 2135416 (27.08.1999)
способ переработки отходов жидкофазного окисления алкилароматических углеводородов -  патент 2046110 (20.10.1995)
способ получения основных углекислых солей меди, цинка, никеля и кобальта и их оксидов -  патент 2043301 (10.09.1995)
Наверх