медицинский термометр
Классы МПК: | G01K5/22 с возможностью расширения столбика жидкости в пределах узкого диапазона температур, например медицинские термометры |
Автор(ы): | Гончаров В.А. |
Патентообладатель(и): | Казанский физико-технический институт Казанского научного центра РАН |
Приоритеты: |
подача заявки:
1992-07-21 публикация патента:
27.06.1995 |
Использование, в медицинской технике для контроля внутритканевой температуры при радиочастотной гипертермии. Сущность: медицинский термометр содержит гибкий температурный зонд с датчиком температуры в виде глухого капилляра, заполненного термометрическим телом и размещенного с возможностью перемещения в защитной оболочке, и соединенный с ним блок регистрации, включающий соединенный с капилляром датчик состояния термометрического тела, блок привода капилляра, приемник капилляра, соединенный с блоком контроля температуры приемника, и вычислительное устройство, соединенное с датчиком состояния термометрического тела, блоком контроля температуры приемника. Капилляр выполнен с постоянным сечением, термометрическим телом является диэлектрическая жидкость, а датчик состояния выполнен в виде датчика поступившей из капилляра жидкости. Приемник капилляра выполнен в виде двух плоских параллельных пластин, разделенных прямолинейными прокладками - направляющими, а размещенная в приемнике часть капилляра расположена в зазоре в виде петли переменной длины, при этом защитная оболочка на нерабочем участке зонда снабжена дополнительной термостатирующей оболочкой. Технический результат: сокращение времени измерительного цикла термометра при измерении распределения температур в исследуемом объекте. 4 з.п. ф-лы, 1 ил.
Рисунок 1
Формула изобретения
1. МЕДИЦИНСКИЙ ТЕРМОМЕТР, содержащий гибкий температурный зонд с датчиком температуры и соединенный с ним блок регистрации, отличающийся тем, что температурный зонд и датчик температуры выполнены в виде глухого капилляра, заполненного термометрическим телом и размещенного с возможностью перемещения в защитной оболочке, и блок регистрации содержит соединенный с капилляром датчик состояния термометрического тела, блок привода капилляра, приемник капилляра, соединенный с блоком контроля температуры приемника, и вычислительное устройство, соединенное с датчиком состояния термометрического тела, блоком привода капилляра и блоком контроля температуры приемника. 2. Термометр по п.1, отличающийся тем, что термометрическим телом является диэлектрическая жидкость, а датчик состояния термометрического тела выполнен в виде датчика количества жидкости, поступившей из капилляра. 3. Термометр по п.1, отличающийся тем, что капилляр выполнен с постоянным сечением. 4. Термометр по п.1, отличающийся тем, что приемник капилляра выполнен в виде двух плоских параллельных пластин, разделенных прямолинейными параллельными прокладками-направляющими, причем размещенная в приемнике часть капилляра расположена в зазоре между пластинами в виде петли переменной длины, при этом криволинейная часть петли выполнена с постоянными геометрическими параметрами. 5. Термометр по п.1, отличающийся тем, что защитная оболочка на нерабочем участке зонда снабжена дополнительной термостатирующей оболочкой.Описание изобретения к патенту
Изобретение относится к области термометрии, конкретно к медицинским термометрам для измерения температуры в зоне действия радиочастотного электромагнитного поля, и предназначено, преимущественно, для контроля внутритканевой температуры в сеансах радиочастотной (ВЧ и СВЧ) гипертермии при лечении онкологических заболеваний. Известны медицинские термометры (Б.А.Красюк, О.Г.Семенов, А.Г.Шереметьев, В. А. Шестериков. Световодные датчики. М. Машиностроение, 1990 256 с.), нечувствительные к радиочастотному электромагнитному полю, содержащие гибкий температурный зонд, образованный волоконным световодом и расположенным на его торце датчиком температуры, источник света и блок регистрации. Благодаря температурной зависимости оптических свойств среды, используемой в датчике (например, показателя преломления или спектра флуоресценции), регистрируемые параметры светового излучения, отраженного или переизлученного датчиков (например, интенсивность или величины, характеризующие спектр), однозначно связаны с измеряемой температурой, на чем и основано действие этих термометров. К недостаткам таких устройств следует отнести: сравнительно большой диаметр датчика (1,5-3 мм); нелинейность его передаточной характеристики; конструктивную сложность блока регистрации; невозможность оперативного измерения распределения температур в исследуемом объекте. Известен термометр для измерения температуры объекта, находящегося под воздействием высокочастотного электромагнитного поля (пат. США N 4785824, А 61 В, 1989), содержащий гибкий (световодный) температурный зонд с люминесцентным датчиком температуры, смонтированным на оптически прозрачном элементе, прикрепленном к концу световода, и соединенный с зондом блок регистрации. Действие известного термометра основано на измерении спектральных параметров, характеризующих люминесценцию материала датчика и зависящих от температуры. При измерении внутритканевой температуры зонд вводят (имплантируют) непосредственно в исследуемый орган, нагреваемый высокочастотным электромагнитным полем. Это техническое решение наиболее близко к заявляемому и выбрано в качестве прототипа. Известный термометр имеет следующие недостатки. 1. Прибор не позволяет оперативно оценивать распределение темпеpатур в исследуемом органе, так как перемещение зонда, непосредственно введенного в ткань, крайне затруднительно и травматично. Возможное использование дополнительной защитной оболочки (микрокатетера), внутри которой можно было бы свободно перемещать зонд, также не привело бы к существенному сокращению времени, затрачиваемого на оценку распределения температур, что связано с необходимостью ручного перемещения зонда и визуального считывания показаний термометра, соответствующих различным положениям зонда. 2. Как следует из описания известного термометра, выбранного в качестве прототипа, внешний диаметр его температурного зонда составляет 0,25 мм; в этом случае дополнительная защитная оболочка (необходимая при измерении распределения температур), обладающая достаточной механической прочностью, должна иметь внешний диаметр около 1 мм. Введение такой оболочки в ткань также весьма травматично. Задачей, на решение которой направлено заявляемое изобретение, является уменьшение диаметра температурного зонда с целью снижения травматичности при его введении в ткань, и сокращение времени измерительного цикла термометра при измерении распределения температур в исследуемом объекте. Решение поставленной задачи заключается в том, что в известном термометре, содержащем гибкий температурный зонд с датчиком температуры и соединенный с ним блок регистрации температурный зонд и датчик температуры выполнены в виде глухого капилляра, заполненного термометрическим телом и размещенного с возможностью перемещения в защитной оболочке, а блок регистрации содержит соединенный с капилляром датчик состояния термометрического тела, блок привода капилляра, приемника капилляра, соединенный с блоком контроля температуры приемника, и вычислительное устройство, соединенное с датчиком состояния термометрического тела, блоком привода капилляра и блоком контроля температуры приемника. Интегральные параметры состояния (например, объем, давление и т.д.) термометрического тела, заполняющего подвижный капилляр, частично расположенный в буферной емкости (приемнике) при известной температуре, и частично в оболочке, помещенной в среду с произвольным распределением температур, однозначно связаны с температурой в той точке, где в данный момент находится свободный (перемещаемый) конец капилляра, что позволяет, регистрируя какой-либо из этих интегральных параметров как функцию координаты конца капилляра, получать полную информацию о распределении температур вдоль оболочки. Предложенное техническое решение дает возможность существенно уменьшить диаметр температурного зонда, так как зонд содержит единственный капилляр, внешний диаметр которого, как правило, не превышает 0,1-0,03 мм; при этом минимально допустимый внешний диаметр защитной оболочки (ее участка, помещаемого в исследуемую среду) зависит от прочности применяемого материала оболочки и может быть доведен до 0,5-0,2 мм и менее. Поскольку время установления равновесного значения локальной температуры для капилляров диаметром порядка сотых долей миллиметра (при контакте с воздухом при атмосферном давлении) исчисляется сотыми долями секунды, а постоянную времени датчика состояния термометрического тела выбирают того же порядка величины или менее, предложенное техническое решение позволяет сократить время измерительного цикла термометра при измерении распределения температур. Наличие механического привода капилляра и быстродействующего вычислительного устройства приводит к дополнительному сокращению времени измерительного цикла. Использование жидкости в качестве термометрического тела, и датчика объема этой жидкости в качестве датчика состояния термометрического тела обеспечивает высокое быстродействие системы "капилляр датчик состояния" (по сравнению, например, с вариантом, когда капилляр заполнен газом, давление которого перемещает столб жидкости в датчике), а также аддитивность и линейность вкладов локальных температур в регистрируемый параметр (объем жидкости, поступающей в датчик из капилляра), что приводит к упрощению алгоритма вычисления распределения температур и конструкции вычислительного устройства. Используемая жидкость является диэлектрической (имеет малые диэлектрические потери в диапазоне высоких и сверхвысоких частот), что практически устраняет погрешность, связанную с непосредственным нагревом термометрического тела радиочастотным электромагнитным полем. В качестве термометрических жидкостей могут быть использованы, например, жидкие углеводороды или их смеси. При любом выборе термометрического тела и датчика состояния алгоритм вычислений и конструкция вычислительного устройства оказываются наиболее простыми, если капилляр имеет постоянное поперечное сечение (является однородным). Для устранения погрешности, связанной с изменениями регистрируемого параметра термометрического тела, вызванными изгибом участка капилляра, находящегося в приемнике, последний в конкретном варианте конструкции термометра выполнен в виде двух плоских параллельных пластин, разделенных прямолинейными параллельными прокладками-направляющими, причем находящийся в приемнике участок капилляра расположен в зазоре между пластинами в виде петли переменной длины, криволинейная часть которой имеет постоянные геометрические параметры (длину и локальную кривизну). Для ослабления влияния температуры окружающей среды защитная оболочка, за исключением ее оконечной части, вводимой в исследуемый объект, снабжена дополнительной термостатирующей оболочкой, причем последняя может быть выполнена как пассивной (например, в виде толстостенной трубки из пористого пластика), так и активной (например, в виде термостатирующей рубашки с циркулирующим теплоносителем). Оконечная (рабочая) часть защитной оболочки выполнена съемной и имеет минимально возможную толщину стенки, определяемую прочностью материала оболочки. Предложенный термометр может быть использован, в частности, как элемент системы для измерения двух- и трехмерного распределения температур, которая может содержать несколько температурных зондов и общий многоканальный блок регистрации. Возможность получать оценку объемного распределения температур в объекте особенно важна для медицинских приложений предложенного технического решения. На фигуре приведена общая схема термометра. Температурный зонд выполнен в виде гибкого сухого капилляра 1 (например, стеклянного или кварцевого капилляра, имеющего внешний диаметр 0,03-0,1 мм и длину порядка 1 м), заполненного термометрическим телом (например, диэлектрической жидкостью), и свободно размещенного в глухой защитной оболочке 2, которая в конкретных вариантах конструкции снабжена дополнительной термостатирующей оболочкой 3. Блок регистрации 4 содержит соединенный с капилляром 1 датчик 5 состояния термометрического тела (например, емкостный датчик количества жидкости, поступающей из капилляра 1), блок 6 привода капилляра 1 (например, шаговый двигатель с фрикционным роликом и устройством управления), приемник 7 капилляра 1, в конкретном варианте конструкции выполненный в виде двух плоских параллельных пластин (на фигуре они расположены в плоскости рисунка, а их контур совпадает с контуром приемника 7), разделенных прокладками-направляющими (выделены косой штриховкой), в котором (приемнике) в виде петли 8 расположена часть капилляра 1, блок 9 контроля температуры приемника 7 и вычислительное устройство 10, соединенное с датчиком 5 и блоками 6 и 9. Вычислительное устройство 10 в конкретных вариантах исполнения представляет собой аналоговый или цифровой вычислитель с фиксированной программой, либо универсальный микрокомпьютер. Капилляр 1 изображен на фигуре в двух произвольных положениях (сплошной и штриховой линиями). Термометр работает следующим образом. В исходном состоянии участок капилляра 1, находящийся в приемнике 7, имеет максимальную длину, и капилляр 1 целиком расположен в пределах термостатирующей оболочки 3 и блока регистрации 4. Рабочая (оконечная) часть защитной оболочки 2 отсоединена. Перед началом измерений рабочую часть оболочки 2 вводят в исследуемый объект. При измерении внутритканевой температуры введение может осуществляться, например, с помощью жесткого металлического стержня, который затем удаляют. К помещенной в исследуемый объект рабочей части оболочки 2 присоединяют остальную ее часть. По команде, поступившей из вычислительного устройства 10, блок привода 6 начинает перемещать капилляр 1 вдоль оболочки 2 (в конкретных вариантах исполнения прибора подача капилляра 1 может осуществляться непрерывно (с постоянной скоростью), либо дискретно (по шагам). Температуру То приемника 7 измеряют с помощью блока 9 контроля температуры; в конкретных вариантах исполнения температуру приемника 7 с помощью блока 9 поддерживают постоянной. В том и другом случае информация об этой температуре поступает в вычислительное устройство 10. Таким образом, одна часть капилляра 1 находится в неизвестном поле температур Т(х), где х криволинейная координата, отсчитываемая вдоль оболочки 2, а другая (дополнительная) его часть в приемнике 7 при известной температуре То, и при движении капилляра соотношение между этими частями изменяется. При этом информация о параметре F(х) термометрического тела, регистрируемом датчиком 5 в функции координаты х перемещаемого конца капилляра 1, также поступает в вычислительное устройство 10. По функции F(х) и значению температуры То вычислительное устройство 10 восстанавливает зависимость Т(х) и передает информацию о ней на индикатор или в какое-либо внешнее устройство. По достижении рабочим концом капилляра 1 крайнего (левого по фигуре) положения вычислительное устройство 10 подает команду реверса на блок привода 6, который возвращает капилляр 1 в исходное положение, на чем измерительный цикл заканчивается. По следующей команде вычислительного устройства 10 начинается новый измерительный цикл. Регистрация параметра F(х) в других версиях алгоритма работы термометра может происходить при движении капилляра 1 в обратном направлении или в обоих направлениях. В конкретном варианте термометра, когда в качестве термометрического тела использована жидкость, а датчик 5 регистрирует объем









d[













Класс G01K5/22 с возможностью расширения столбика жидкости в пределах узкого диапазона температур, например медицинские термометры
прибор для измерения и регулирования температуры - патент 2481560 (10.05.2013) | ![]() |
сплав на основе галлия - патент 2125111 (20.01.1999) | |
термометр - патент 2123671 (20.12.1998) | |
прибор для измерения и регулирования температуры - патент 2078316 (27.04.1997) | |
медицинский максимальный термометр - патент 2058539 (20.04.1996) | |
способ оценки адекватности наркоза - патент 2055329 (27.02.1996) |