способ переработки сернокислотных отходов

Классы МПК:C10G17/10 регенерация использованных агентов очистки 
Автор(ы):, , , ,
Патентообладатель(и):Всероссийский научно-исследовательский институт углеводородного сырья
Приоритеты:
подача заявки:
1993-07-27
публикация патента:

Сущность изобретения: сернокислотные отходы эмульгируют при добавлении углеводородного продукта в присутствии 0,0005 0,005 мас. металлфталоцианинового катализатора при 80 120°С. Полученную эмульсию смешивают с дополнительным количеством нагретого до 200 220°С углеводородного продукта. Полученную смесь выдерживают при 160 180°С в течение 1 1,5 ч и разделяют на жидкий и газообразный продукты. Газообразный продукт охлаждают в конденсаторе смешения. В качестве катализатора используют тетрасульфофталоцианин железа или фталоцианин железа. 1 з.п. ф-лы, 1 табл. 1 ил.
Рисунок 1, Рисунок 2

Формула изобретения

1. СПОСОБ ПЕРЕРАБОТКИ СЕРНОКИСЛОТНЫХ ОТХОДОВ, включающий их эмульгирование при добавлении углеводородного продукта при 80 120oС, смешение полученной эмульсии с дополнительным количеством нагретого углеводородного продукта, выдерживание образовавшейся смеси при повышенной температуре, разделение ее на жидкий и газообразный продукты и последующее охлаждение газообразного продукта в конденсаторе смешения, отличающийся тем, что эмульгирование ведут в присутствии катализатора на основе металлфталоцианина, взятого в количестве 0,0005 0,005 мас. на количество серной кислоты в сернокислотных отходах, смешение эмульсии с нагретым углеводородным продуктом проводят при нагреве его до 200 220oС и выдерживание смеси осуществляют при 160 180oС в течение 1 1,5 ч.

2. Способ по п. 1, отличающийся тем, что в качестве катализатора используют тетрасульфофталоцианин железа или фталоцианин железа.

Описание изобретения к патенту

Изобретение относится к технологии переработки отходов, содержащих серную кислоту, которые образуются в значительных количествах в нефтеперерабытвающей и нефтехимической промышленности, где серная кислота является катализатором или реагентом.

Известен способ переработки сернокислотных отходов путем смешения их с нагретым до 240-400оС углеводородным продуктом [1]

Основными недостатками указанного способа являются неполное восстановление кислоты и кислых органических соединений до сернистого ангидрида, образование значительных количеств твердых продуктов и закоксование технологического оборудования.

Наиболее близким к предлагаемому является способ переработки сернокислотных отходов, включающий эмульгирование их с углеводородным продуктом при их весовом соотношении от 1:1 до 1:20 и температуре 20-130оС, смешение полученной эмульсии с нагретым до 240-400оС углеводородным продуктом, выдерживание образовавшейся смеси в сечение 15-30 мин, разделение смеси на жидкий и газообразный продукты с последующим охлаждением газообразного продукта потоком циркулирующего орошения в конденсаторе смешения для конденсации и удаления из газа паров воды [2]

Недостатками этого способа являются значительные энергозатраты на проведение процесса из-за необходимости нагрева циркулирующего углеводородного продукта до 240-400оС и недостаточно высокая степень восстановления серной кислоты до сернистого ангидрида.

Целью изобретения является снижение энергозатрат на проведение процесса и повышение степени восстановления серной кислоты до сернистого ангидрида.

Цель достигается предлагаемым способом переработки сернокислотных отходов, включающим их эмульгирование при добавлении углеводородного продукта при температуре 80-120оС, смешение полученной эмульсии с дополнительным количеством нагретого углеводородного продукта, выдерживание образовавшейся смеси при повышенной температуре, разделение ее на жидкий и газообразный продукты и последующее охлаждение газообразного продукта в конденсаторе смешения, в котором эмульгирование ведут в присутствии катализатора на основе металлфталоцианина, взятого в количестве 0,0005-0,005 мас. на количество серной кислоты в сернокислотных отходах, смешение эмульсии с нагретым углеводородным продуктом проводят при нагреве его до 200-220оС, и выдерживание смеси осуществляют при 160-180оС в течение 1-1,5 ч. При этом в качестве катализатора используют тетрасульфофталоцианин железа или фталоцианин железа.

Отличительными признаками предлагаемого способа являются эмульгирование сернокислотных отходов нагретым углеводородным продуктом в присутствии катализатора на основе металлфталоцианина, смешение полученной эмульсии с дополнительным количеством углеводородного продукта при нагреве его до 200-220оС, выдерживание образовавшейся смеси при 160-180оС в течение 1-1,5 ч и использование в качестве металлфталоцианина тетрасульфофталоцианин железа или фталоцианин железа в указанных выше количествах.

На чертеже представлена схема осуществления предлагаемого способа.

Углеводородный продукт насосом 1 подают в смеситель-диспергатор 2. Одновременно в смеситель-диспергатор 2 насосом 3 подают кислотосодержащее сырье и насосом 4 из емкости 5 водный или кислый раствор металлфталоцианина в качестве катализатора. Образовавшуюся тонкую диспергированную эмульсию продуктов нагревают в смесителе 6 до 160-180оС подогретым циркулирующим потоком углеводородного продукта. Реакционную массу из смесителя 6 направляют в сепаратор 7, где выдерживают в течение 1-1,5 ч.

Газообразные продукты реакции из сепаратора 7 выводят в конденсатор 8 смешения, а жидкий углеводородный продукт насосом 9 прокачивают через нагревательную печь 10 и направляют в смеситель 6, а балансовое количество выводят через концевой холодильник 11 с установки. Полученные газообразные и жидкие продукты обрабатывают в соответствии с их свойствами.

Предлагаемый способ предусматривает возможность переработки разнообразных сернокислотных отходов с различным содержанием серной кислоты, воды и органических соединений.

П р и м е р 1. Гудрон прямой перегонки нефти эмульгируют с кислым гудроном процесса "Парекс" и водным раствором тетрасульфофталоцианина железа, взятого в количестве 0,0005 мас. от количества серной кислоты в сернокислотном отходе. Эмульгирование проводят при 80-90оС и соотношении гудрон:кислый гудрон 10:1. Полученную эмульсию смешивают в реакционном аппарате с нагретым прямогонным гудроном в соотношении 1:3 и выдерживают реакционную смесь при 180оС в течение 1,5 ч.

Состав кислого гудрона, мас. Серная кислота 69,5 Вода 4

Сульфокислоты в пере- счете на SO3Н 5 Органические примеси 21,5

Свойства исходного прямогонного гудрона: удельный вес 985 кг/м3; содержание общей серы, мас. 3,10; кислотность (мг КОН/г) отсутствует.

В полученном газе содержание сернистого ангидрида составляет 96 мас. СО2 2 мас. легких углеводородных газов не более 2 мас.

Остальные результаты эксперимента приведены в таблице.

П р и м е р 2. Проводят по примеру 1, но в присутствии 0,005 мас. тетрасульфофталоцианина железа от взятого количества серной кислоты, содержащейся в кислом гудроне.

Состав полученного газа аналогичен составу газа по примеру 1.

Остальные результаты эксперимента приведены в таблице.

П р и м е р 3. Проводят по примеру 2, но при выдержке реакционной смеси в течение 1 ч и температуре 160оС.

В полученном газе содержание сернистого ангидрида составляет 97 мас. СО2 2,0 мас. легких углеводородных газов не более 1,0 мас.

Остальные результаты эксперимента приведены в таблице.

П р и м е р 4. Проводят по примеру 3, но с использованием отработанной серной кислоты алкилирования.

Состав отработанной серной кислоты, мас. Серная кислота 85 Вода 6

Сульфокислоты в пере- счете на SO3Н 0,5 Органические примеси 8,5

Состав полученного газа аналогичен составу газа по примеру 3. Остальные результаты эксперимента приведены в таблице.

П р и м е р 5. Проводят по примеру 3, но в качестве катализатора используют фталоцианин железа в количестве 0,0005 мас. от взятого объема серной кислоты, содержащейся в сернокислотном отходе.

Состав полученного газа аналогичен составу газа по примеру 3.

Остальные результаты эксперимента приведены в таблице.

П р и м е р 6. Проводят по примеру 5, но в присутствии 0,005 мас. фталоцианина железа.

Состав полученного газа аналогичен составу газа по примеру 3.

Остальные результаты приведены в таблице.

П р и м е р 7. Проводят по примеру 1, но в отсутствии тетрасульфофталоцианина железа.

В полученном газе содержится 95 мас. сернистого ангидрида; СО2 2,5 мас. легких углеводородов не более 2,5 мас.

Остальные результаты эксперимента приведены в таблице.

П р и м е р 8. Проводят по примеру 1, но в отсутствии тетрасульфофталоцианина железа и при температуре 280оС.

В полученном газе содержание сернистого ангидрида составляет 92 мас. СО2 3 мас. легких углеводородов не более 5 мас.

Остальные результаты эксперимента приведены в таблице.

Из приведенных в таблице экспериментальных данных видно, что проведение процесса по предлагаемому способу с использованием катализатора в сравнении с известным без катализатора позволяет существенно снизить температуру нагрева реакционной смеси и обеспечить 100%-ное восстановление серной кислоты до сернистого ангидрида.

Класс C10G17/10 регенерация использованных агентов очистки 

способ переработки кислого гудрона -  патент 2289605 (20.12.2006)
способ получения битумного вяжущего из кислого гудрона -  патент 2289604 (20.12.2006)
способ переработки кислых гудронов -  патент 2263134 (27.10.2005)
способ переработки кислых гудронов -  патент 2244732 (20.01.2005)
способ получения строительного и кровельного битума -  патент 2215772 (10.11.2003)
способ отбора кислого гудрона из земляной карты -  патент 2196802 (20.01.2003)
способ получения вяжущего для строительной индустрии -  патент 2191201 (20.10.2002)
способ переработки кислых гудронов -  патент 2186086 (27.07.2002)
способ переработки кислых гудронов -  патент 2183655 (20.06.2002)
способ приготовления водной смоляной суспензоэмульсии (варианты), способ регенерирования серной кислоты, способ ожижения смол и их удаления -  патент 2182589 (20.05.2002)
Наверх