способ кондуктометрического определения электрофизических параметров вещества

Классы МПК:G01N27/02 измерением полного сопротивления материалов 
Автор(ы):
Патентообладатель(и):Научно-производственная фирма "Аквазинэль"
Приоритеты:
подача заявки:
1992-12-15
публикация патента:

Использование: в материаловедении для анализа твердых и жидких веществ. Сущность изобретения: на образец действуют магнитным полем с изменяющейся напряженностью и СВЧ-полем с изменяющейся площадью. Определяют зависимость изменения электрорезистивного параметра от изменяющегося параметра воздействующего поля. По полученным зависимостям рассчитывают искомые характеристики. 3 з.п. ф-лы, 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

1. СПОСОБ КОНДУКТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ЭЛЕКТРОФИЗИЧЕСКИХ ПАРАМЕТРОВ ВЕЩЕСТВА, включающий помещение образца в электрическое поле и измерение электрорезистивных параметров образца с последующим определением искомых параметров расчетным путем, отличающийся тем, что на образец дополнительно воздействуют магнитным полем с переменной напряженностью и СВЧ-полем с переменной мощностью, определяют зависимость электрорезистивного параметра от изменяющегося параметра воздействующего поля, и расчет параметров ведут с использованием полученных зависимостей.

2. Способ по п.1, отличающийся тем, что в качестве электрорезистивного параметра используют диэлектрическую проницаемость.

3. Способ по п.1, отличающийся тем, что в качестве электрорезистивного параметра используют электросопротивление.

4. Способ по п.1, отличающийся тем, что в качестве электрорезистивного параметра используют магнитную восприимчивость.

Описание изобретения к патенту

Изобретение относится к материаловедению и может быть использовано для анализа твердых и жидких веществ, в частности пород, минералов, полупроводников, биологически активных жидкостей и т.д.

Известен способ анализа веществ при воздействии на него магнитного поля с определением строения и структуры образца [1]

Однако этот способ не позволяет измерить электрокинетические явления и судить о строении, составе и свойствах вещества на основании электрокинетических явлений.

Известен также способ исследования электрофизических свойств на основе явления парамагнитного резонанса [2] При анализе образец подвергают одновременному воздействию магнитного и СВЧ-поля.

Способ имеет те же недостатки что и вышеуказанный.

Наиболее близким к изобретению является кондуктометрический способ определения электрофизических свойств материалов, позволяющий судить с учетом электрокинетических явлений о структуре и составе полимеров [3]

Недостатком этого способа является ограниченность информативности.

Предлагаемый способ исследования электрофизических свойств веществ может быть охарактеризован следующей совокупностью существенных признаков: на образец одновременно воздействуют магнитным полем с изменяющейся напряженностью, СВЧ-полем переменной мощности и электрическим полем, изменяют электрорезистивные характеристики образца, определяют зависимость изменения резистивных характеристик образца от изменения напряженности магнитного поля (или мощности СВЧ-излучения), определяют параметры электронного парамагнитного резонанса и рассчитывают по умеренным параметрам и зависимостям искомые электрофизические характеристики образца. В качестве резистивных характеристик могут быть выбраны: электросопротивление, диэлектрическая проницаемость, магнитная восприимчивость и т.д.

Изобретение позволяет выявить механизмы переноса энергии между различными энергетическими состояниями объекта (в частности, между спиновой системой и подвижными носителями заряда, установлении связи между носителями зарядов и центрами парамагнетизма и выделении резонансной составляющей электросопротивления), регистрировать переходы: металл-полупроводник, полупроводник-диэлектрик, расширить функциональные возможности ЭПР-спектрометров для регистрации воздействия магнитного и СВЧ-полей путем измерения изменения резистивных свойств и т.д.

На фиг.1 приведены зависимости между электросопротивлением и резонансными параметрами характерной синглетной линии для малометаморфизированных углей, склонных к самовозгоранию (шахта Новодружниковская ПО Лисичанскуголь, 82 восстановленная лава, пл. 12м2, глубина шпуров 0,6-1,2 м); на фиг.2 зависимость между электропроводностью и этими же параметрами для биосорбентов (отходов производства шампанских и столовых вин и коньяка АО "Фанагория" Краснодарского края). Использование этих материалов в качестве сорбентов показало, что наиболее эффективными сорбентами в одном генетическом ряду оказались такие, которые имеют максимальное электросопротивление (минимальную электропроводность), т.е. N 1 и БД. По проведенным измерениям нерезонансных электрохимических характеристик, например дзета-потенциала, при гидратации этих сорбентов однозначно не удалось идентифицировать наиболее эффективные из них.

Подобные зависимости были получены для образцов пород-коллекторов нефти и газа Тенгизского и Русского месторождений, восточного Ставрополья и Татарии. Только образцы пород Русского месторождения (фиг.3) изменяли свое электросопротивление. Проводится поиск реализации этого эффекта в технологии нефтегазового комплекса. Следует заметить, что зависимости параметров ЭПР, удельного сопротивления и относительного сопротивления от изменяющегося параметра СВЧ-поля имеют аналогичный вид.

Для реализации изобретения был использован комплекс оборудования, выполненный на базе стандартного ЭПР-спектрометра. Кроме стандартного ЭПР-спектрометра в комплекс входили держатель образца с кондуктометрическими электродами, которые могут быть выполнены из любого металла с малым электрическим сопротивлением. Электроды подключены к измерительному блоку, выполненному, в частности, как комбинация универсального электрометра (типа В-7-30) и измерителя индуктивности, емкости и сопротивления (типа Е7-12). Держатель выполнен с возможностью перемещения в вертикальной плоскости с фиксацией положения.

Способ реализуется следующим образом.

Образец размещают на держателе в контакте с кондуктометрическими электродами. Помещают держатель в отверстие модернизированного резонатора ЭПР-спектрометра (фиг.4), причем металлические кондуктометрические электроды не должны нарушать добротности резонатора и не выходить за пределы полюсных наконечников. Положение держателя в зависимости от величины образца подбирается так, чтобы верхняя часть образца была размещена в зоне кучности одной из компонент СВЧ-поля. Измеряют зависимость электрорезистивного параметра образца (электросопротивление, магнитная восприимчивость, диэлектрическая проницаемость) от величины подаваемой напряженности магнитного поля, а также характеристики ЭПР. Экспериментальные данные приведены на фиг.1-3. Напряженность магнитного поля в ходе эксперимента изменяли от 2 способ кондуктометрического определения электрофизических   параметров вещества, патент № 2045052 10-4 до 0,75 Тл при скорости развертки от 10 с до 35 мин. Мощность СВЧ-поля изменяли от 1 до 50 мВт.

При анализе полученных экспериментальных данных был сделан вывод о том, что предложенным способом исследуемые объекты идентифицированы дополнительно по синфазности электропроводящих и парамагнитных свойств, что вероятно, связано с различными механизмами обмена энергией между спиновой системой, поглощающей СВЧ-излучения, и свободными носителями зарядов.

Изобретение позволяет изучать раздельные или одновременное влияние магнитного поля СВЧ-полей на резистентные свойства веществ, идентифицировать дополнительные электрокинетические свойства веществ и изучать механизм релаксации (диссипации) энергии.

Класс G01N27/02 измерением полного сопротивления материалов 

способ и система автоматизированного контроля процессов в первичных отстойниках, вторичных отстойниках и/или отстойниках-илоуплотнителяx очистных сооружений объектов водоотведения жилищно-коммунального хозяйства -  патент 2522316 (10.07.2014)
способ определения концентрации компонентов смеси высокоразбавленных сильных электролитов -  патент 2506577 (10.02.2014)
способ определения остаточной водонасыщенности и других форм связанной воды в материале керна -  патент 2502991 (27.12.2013)
устройство для измерения удельной электропроводности пластичного вещества -  патент 2498283 (10.11.2013)
способ определения содержания водорода в титане -  патент 2498282 (10.11.2013)
способ определения электрических характеристик и/или идентификации биологических объектов и устройство для его осуществления -  патент 2488104 (20.07.2013)
устройство для измерения объемной концентрации пузырьков газа в жидкости -  патент 2485489 (20.06.2013)
трехэлектродный датчик -  патент 2482469 (20.05.2013)
способ селективного определения концентрации аммиака и его производных в газовой среде -  патент 2473893 (27.01.2013)
способ определения электрофизического параметра порошкообразных материалов и устройство, его осуществляющее -  патент 2467319 (20.11.2012)
Наверх