способ определения морозостойкости цементных материалов

Классы МПК:G01N33/38 бетона; извести; цемента; гипса; кирпичей; керамики; стекла; строительных растворов 
Автор(ы):,
Патентообладатель(и):Научно-производственное объединение "Всесоюзный научно- исследовательский институт физико-технических и радиотехнических измерений"
Приоритеты:
подача заявки:
1992-07-09
публикация патента:

Использование: в процессе контроля показателей качества строительных пористых материалов, изготавливаемых на основе применения цементобетонов, растворов, цементного камня и асбестоцемента. Сущность изобретения: изготавливают контрольные и основные образцы, насыщают их водой при сжатии контрольных образцов после насыщения водой, а основных после одноразового замораживания. Затем определяют капиллярную пористость испытуемого материала и показатель повышения прочности при замораживании для данной капиллярной пористости, находят максимальную и минимальную морозостойкость и максимальный и минимальный показатель повышения прочности материала при замораживании для капиллярной пористости испытуемого материала по статистически установленной зависимости морозостойкости от их капиллярной пористости. Морозостойкость цементных материалов рассчитывают по формуле. 1 ил.
Рисунок 1, Рисунок 2

Формула изобретения

СПОСОБ ОПРЕДЕЛЕНИЯ МОРОЗОСТОЙКОСТИ ЦЕМЕНТНЫХ МАТЕРИАЛОВ, включающий изготовление контрольных и основных образцов, насыщение их водой, испытание на прочность при сжатии контрольных образцов в насыщенном водой состоянии, отличающийся тем, что насыщенные водой основные образцы подвергают одноразовому замораживанию и испытывают их на прочность при сжатии в замороженном состоянии, определяют капиллярную пористость испытуемого материала, находят показатель повышения прочности испытуемого материала при замораживании для данной капиллярной пористости, по статистически установленной зависимости морозостойкости от их капиллярной пористости находят максимальную и минимальную морозостойкость и максимальный и минимальный показатель повышения прочности материала при замораживании для капиллярной пористости испытуемого материала, а морозостойкость цементных материалов рассчитывают по формуле

способ определения морозостойкости цементных материалов, патент № 2045071

где Mi искомая морозостойкость материала, циклы;

Mmax, Mmin максимальная и минимальная морозостойкость материала для данной капиллярной пористости, соответственно, циклы;

Ki показатель повышения прочности испытуемого материала при замораживании для данной капиллярной пористости,

способ определения морозостойкости цементных материалов, патент № 2045071

где Rкi, Roi- прочность материала в образцах контрольных и основных соответственно;

Kmax, Kmin максимальный и минимальный показатели повышения прочности материала при замораживании для данной капиллярной пористости.

Описание изобретения к патенту

Изобретение относится к промышленности строительных материалов, в частности к контролю качества бетонов, растворов и цементного камня.

Известен способ определения морозостойкости бетона по капиллярной пористости, согласно которому экспериментально определяют степень гидратации цемента в бетоне, вычисляют по данным о составе бетона и степени гидратации цемента капиллярную пористоть бетона и по значениям капиллярной пористости находят морозостойкость бетона на графике заранее установленной усредненной зависимости между морозостойкостью бетона и его капиллярной пористостью.

Недостатком способа является неучет водоснабжения бетона конкретного состава, так как известно, что при одной и той же капиллярной пористости бетоны обладают различным водоснабжением, соответственно различной льдистостью при замораживании, а следовательно, и различной морозостойкостью. По этой причине отклонения определяемой по данному способу морозостойкости от ее фактического значения могут достигнуть 30-100% Отклонения, как правило, тем больше, чем меньше морозостойкость.

Наиболее близким к предлагаемому является способ определения морозостойкости цементных материалов, включающий изготовление контрольных и основных образцов, насыщение их водой, испытание на прочность при сжатии контрольных образцов в насыщенном водой состоянии.

Недостатки этого способа высокая энерго- и трудоемкость, обусловленная необходимостью изготовления значительного количества образцов и их многоцикловыми испытаниями в мощных морозильных камерах, а также его большая длительность, которая из-за многоцикловых испытаний достигает нескольких месяцев, а при испытании высокоморозостойких бетонов до одного года.

Задача изобретения снижение энерго- и трудоемкости и длительности определения морозостойкости цементных материалов.

Задача достигается тем, что в способе определения морозостойкости цементных материалов, включающем изготовление контрольных и основных образцов, насыщение их водой, прочность при сжатии контрольных образцов в насыщенном водой состоянии, насыщенные водой основные образцы подвергают одноразовому замораживанию и испытывают на прочность при сжатии в замороженном состоянии, определяют капиллярную пористость испытуемого материала, находят показатель повышения прочности испытуемого материала при замораживании для данной капиллярной пористости, по статически установленной зависимости морозостойкости от их капиллярной пористости находят максимальную и минимальную морозостойкость и максимальный и минимальный показатель повышения прочности материала при замораживании для капиллярной пористости испытуемого материала, а морозостойкость цементных материалов рассчитывают по формуле:

Mi= Mmax+ способ определения морозостойкости цементных материалов, патент № 2045071, (1) где Мi искомая морозостойкость материала, циклы;

Мmax, Mmin максимальная и минимальная морозостойкость материала для данной капиллярной пористости, соответственно, циклы;

Кi показатель повышения прочности испытуемого материала при замораживании для данной капиллярной пористости

Ki= способ определения морозостойкости цементных материалов, патент № 2045071, где Rki, Roi прочность материала в образцах контрольных и основных, соответственно, отн.

Кmax, Kmin максимальный и минимальный показатель повышения прочности материала при замораживании для данной капиллярной пористости, отн.

На чертеже представлено графическое изображение шкалы морозостойкости.

Из графика, построенного на основе статистической обработки экспериментальных данных, следует, что с повышением капиллярной пористости цементных материалов их морозостойкость понижается, а пористость в замороженном состоянии возрастает. Каждому значению капиллярной пористости соответствуют диапазоны значений морозостойкости и прочности, в которых размах этих величин составляет 20-50% для высокоморозостойких и 100-300% для низкоморозостойких материалов. Из графика следует также, что при постоянной капиллярной пористости материала максимальному значению его морозостойкости отвечает минимальное значение прочности в замороженном состоянии и наоборот. Относительно одинаковое изменение указанных диапазонов (Мmax Mmin) способ определения морозостойкости цементных материалов, патент № 2045071 (Kmax Kmin) способ определения морозостойкости цементных материалов, патент № 2045071 const по мере изменения капиллярной пористости позволяет по экспериментально определенному показателю прочности замороженного материала Ki= способ определения морозостойкости цементных материалов, патент № 2045071 и его капиллярной пористости, определять соответствующую морозостойкость с помощью интерполяционной зависимости 1.

Для определения капиллярной пористости измеряют контракцию материала за время его твердения с момента уплотнения смеси в образцах и до начала испытаний на морозостойкость, а также используют следующую зависимость:

Пki= способ определения морозостойкости цементных материалов, патент № 2045071 способ определения морозостойкости цементных материалов, патент № 2045071 100% (2) где Пki капиллярная пористости материала,

способ определения морозостойкости цементных материалов, патент № 2045071i объем воды затворения в объеме смеси материала за вычетом водоотделения при уплотнении смеси или водопоглощения ее пористыми заполнителями, л;

Vi объем пор пористого заполнителя в объеме смеси материала, л;

Vi объем смеси материала, л;

способ определения морозостойкости цементных материалов, патент № 2045071Vi контракция материала в объеме Vi, обусловленная гидратацией цемента к сроку его испытаний на морозостойкость, л;

А стехиометрический коэффициент контракции, принимаемый для различных типов цемента в диапазоне от 4,1 до 6, отн.

Способ осуществляют следующим образом.

Проводят ускоренное определение морозостойкости бетона семи составов на портландцементе марки 400 Воскресенского завода, гранитном заполнителе фракции 5-25 мм и кварцевом речном песке с модулем 1,6. Из смесей каждого состава изготавливают по 6 образцов кубов размером 100 х 100 x х 100 мм (по три контрольных и основных). Образцы хранят в течение стандартного срока 28 сут при 20способ определения морозостойкости цементных материалов, патент № 20450712оС и относительной влажности 100%

Все образцы подвергают стандартному водонасыщению, после чего контрольные образцы испытывают на одноосное сжатие, определяют Rki, а основные образцы подвергают однократному замораживанию при 20оС в течение 5 ч. Затем основные образцы в замороженном состоянии испытывают на одноосное сжатие, определяют Roi. Для всех составов вычисляют значения коэффициентов повышения прочности бетона при замо- раживании Кi способ определения морозостойкости цементных материалов, патент № 2045071.

Рассчитывают капиллярную пористость Пki по формуле и данным о составах бетона и его контракции.

Значения Кi и Пki и найденные из шкалы морозостойкости соответствующие значения величин Мmax, Mmin, Kmax и Kmin используют для расчета морозостойкости бетона по формуле 1.

Результаты определения приведены в таблице.

Класс G01N33/38 бетона; извести; цемента; гипса; кирпичей; керамики; стекла; строительных растворов 

способ определения долговечности керамических изделий -  патент 2526299 (20.08.2014)
способ определения предельной растяжимости цементных штукатурных составов -  патент 2506587 (10.02.2014)
способ контроля за нарастанием прочности бетона при тепловой обработке -  патент 2504773 (20.01.2014)
установка для определения кинетики карбонизации бетона -  патент 2502711 (27.12.2013)
способ определения зависимости марки по морозостойкости бетона от водоцементного отношения -  патент 2490631 (20.08.2013)
способ определения водонепроницаемости цементных материалов -  патент 2487351 (10.07.2013)
способ экспериментального определения статико-динамических диаграмм бетона и коэффициента динамического упрочнения бетона с учетом трещинообразования -  патент 2482480 (20.05.2013)
способ испытания строительных материалов на биостойкость -  патент 2471188 (27.12.2012)
способ анализа структуры и контроля прочности бетона строительных конструкций и устройство для его осуществления -  патент 2441234 (27.01.2012)
конструктивный элемент со структурой для обнаружения механических повреждений -  патент 2441216 (27.01.2012)
Наверх