способ получения полуизолирующего арсенида галлия
Классы МПК: | C30B33/04 с использованием электрических или магнитных полей или облучения потоком частиц C30B29/42 арсенид галлия |
Автор(ы): | Колин Н.Г., Косушкин В.Г., Нарочный К.Н., Нойфех А.И., Свистельникова Т.П. |
Патентообладатель(и): | Филиал Научно-исследовательского физико-химического института им.Л.Я.Карпова |
Приоритеты: |
подача заявки:
1992-08-25 публикация патента:
20.10.1995 |
Использование: для получения монокристаллов полуизолирующего арсенида галлия (агп). Сущность изобретения: способ включает облучение монокристаллов быстрыми нейтронами, последующий нагрев и охлаждение. Облучению подвергают монокристаллы с различной степенью компенсации при плотности потока =(0,4-0)1016 см-2. Отжиг проводят при температуре 850 900 °С в течение 20 мин при скорости нагрева и охлаждения 4°С/мин и 2°С/мин соответственно. Получают АГП с улучшенной оптической неоднородностью 1 5%, уменьшенным оптическим поглощением =(6-7)10-3 см-1 на длине волны =10,6 мкм и повышенной термостабильностью свойств. 1 табл.
Рисунок 1
Формула изобретения
СПОСОБ ПОЛУЧЕНИЯ ПОЛУИЗОЛИРУЮЩЕГО АРСЕНИДА ГАЛЛИЯ путем облучения монокристаллов быстрыми нейтронами с последующим нагревом, отжигом и охлаждением, отличающийся тем, что облучению подвергают монокристаллы с различной степенью компенсации при плотности потока не более 5 1012 см-2 с-1 до флюенса ф= (0,4-5,0)1016 см-2, а отжиг проводят при 850-900oС в течение 20 мин при скорости нагрева и охлаждения 4 град/мин и 2 град/мин соответственно.Описание изобретения к патенту
Изобретение относится к технологии полупроводниковых соединений типа АШВУ и может быть использовано при получении монокристаллов полуизолирующего арсенида галлия (АГП) с улучшенными параметрами. Выпускаемые в промышленности монокристаллы АГП имеют ряд недостатков: неоднородность свойств по объему кристалла, достигающая 50% а в ряде случаев и выше; низкую стабильность параметров после термообработки; большую величину коэффициента оптического поглощения (=1,5 10-2 см-1) на длине волны = 10,6 мкм. Широкое применение АГП в производстве электронных приборов, высокая степень интеграции приборов выдвигают более жесткие требования к качеству и геометрическим размерам (диаметр до 250 мм) монокристаллов. Улучшение параметров материала металлургическими способами в процессе выращивания монокристаллов в настоящее время практически не осуществимо. Предлагаемый способ заключается в улучшении параметров АГП облучением нейтронами ядерного реактора и последующей термообработкой. Прототипом служит способ, заключающийся в том, что исходный нелегированный полуизолирующий арсенид галлия облучают быстрыми нейтронами (флюенсом Ф>7 1017 см-2) с последующей термообработкой в течение 30 мин при температуре до 800оС. Недостатки способа в том, что улучшить характеристики полуизолирующего арсенида галлия таким образом не удается. Большие флюенсы нейтронов приводят к усилению прыжковой проводимости и ухудшению параметров материала. Температура отжига низкая и не дает ожидаемого эффекта. Предлагаемый способ отличается тем, что в качестве исходного можно использовать полуизолирующий арсенид галлия с любой степенью компенсации, а облучение вести только быстрыми нейтронами (Е>0,1 МэВ) с плотностью потока не более 5 1012 см-2 с-1 до флюенса Ф=(0,4-5,0) 1016 см-2. Отсечь тепловые нейтроны можно, используя для облучения кадмиевые пеналы или другие известные способы. Необходимость ограничения плотности потока нейтронов вызвана сильным разогревом и возможным растрескиванием материала в процессе облучения. Физический смысл происходящих в материале процессов заключается в следующем. В результате облучения быстрыми нейтронами в арсениде галлия возникают простые радиационные дефекты (пары Феркеля: атом в междоузлии и вакансия). С увеличением дозы облучения растет концентрация вводимых дефектов и повышается вероятность их взаимодействия (коагуляции) и образования более сложных радиационных дефектов (РД), так называемых областей разупорядочения (ОР). Образовавшиеся ОР служат геттерами для простых (точечных) дефектов, образовавшихся в кристалле в процессе облучения и на стадии выращивания. Последующая термообработка облученных образцов при температуре 850-900оС приводит к распаду ОР и перемещению простых дефектов на поверхность и на стоки (термообработка при температурах меньше 850 и выше 900оС и не дает ожидаемого эффекта). Тем самым происходит очистка матрицы от большого количества ростовых и других точечных дефектов. Оптическое поглощение в облученном и термообработанном материале на рабочей длине волны =10,6 мкм становится меньше, происходит так называемое просветление материала. Коэффициент поглощения уменьшается примерно в 2 раза и становится равным =(5-7) 10-3 см-1. Такое явление имеет большое практическое значение в связи с широким применением оптических окон из полуизолирующего арсенида галлия в производстве мощных технологических лазеров. Циклическая обработка образцов (облучение и термообработка) приводит также к значительному повышению однородности и термостабильности свойств материала. Неоднородность электрофизических и оптических (глубокий уровень Е/2) характеристик в объеме материала не превышает 5% Термическая обработка образцов при 900оС в течение 8 часов не приводит к чувствительным изменениям параметров материала, в то время как в обычном (необлученном) материале термообработка при 900оС в течение 30-40 мин уже приводит к значительным изменениям параметров. Применение радиационно-модифицированного материала в производстве полупроводниковых приборов (СБИС, СВЧ и оптоэлектронные приборы и др.) открывает новые перспективы в микроэлектронике. П р и м е р 1. В качестве исходного материала используют монокристаллический слиток полуизолирующего арсенида галлия электронного типа проводимости ( 1108 Омсм), легированного хромом (NCr=31016 см-3), имеющего степень компенсации К=0,05. Оптическая неоднородность (по ЕL2) по диаметру слитка равна 1= 30% Неоднородность электрофизических характеристик, измеренных бесконтактным методом, равна 2 25% Оптическую однородность измеряют на двух оптически полированных пластинах толщиной 5 мм, вырезанных с разных участков слитка, методом оптического пропускания с разрешающей способностью в направлении сканирования 200 мкм и погрешностью измерений, не превышающей 2-3%Оптическое поглощение на длине волны =10,6 мкм измеряют на тех же пластинах. Коэффициент поглощения составляет =1,9 10-2 см-1. Облучение нейтронами проводят в вертикальных каналах реактора ВВР-ц, используя кадмиевые пеналы для устранения тепловых нейтронов. Флюенс быстрых нейтронов (=5 1012см-2 с-1, Е>0,1 МэВ) составляет 5 1016 см-2. После спада наведенной активности до допустимого уровня облученные образцы нагревают в запаянных кварцевых ампулах с равновесным давлением паров мышьяка со скоростью 4оС/мин до температуры 900оС. Отжиг проводят в течение 20 мин, а последующее охлаждение ведут со скоростью 2оС/мин до температуры 400оС, далее охлаждают вместе с печью до комнатной температуры. В результате получают полуизолирующий арсенид галлия ( 2108Ом см) электронного типа проводимости с оптической неоднородностью 1=5% и неоднородностью электрофизических свойств 2=4% Коэффициент поглощения на длине волны = 10,6 мкм составляет =6,7 10-3 см-1. Термообработка образцов при 900оС в течение 8 ч не приводит к заметным изменениям электрофизических параметров материала. П р и м е р 2. В качестве исходного материала используют монокристаллический слиток нелегированного полуизолирующего арсенида галлия электронного типа проводимости ( 8 107 Ом см), имеющего степень компенсации К= 0,35. Оптическая неоднородность по диаметру слитка равна 1=35% Неоднородность электрофизических характеристик, измеренных бесконтактным методом, 2= 50% Коэффициент поглощения на длине волны =10,6 мкм составляет =1,7 10-2 см-1. Облучение быстрыми (=3 1012 см-2 x x с-1, Е>0,1 МэВ) нейтронами проводят в вертикальных каналах реактора ВВР-ц, используя кадмиевые пеналы. Флюенс нейтронов составляет 4 1015 см-2. После спада наведенной активности образцы отжигают при температуре 850оС в течение 20 мин при тех же скоростях нагрева и охлаждения, что в примере 1. В результате получают полуизолирующий арсенид галлия (=1,5 108Ом см) электронного типа проводимости с оптической неоднородностью 1=4,5% и неоднородностью электрофизических свойств 2=4% Коэффициент поглощения на длине волны =10,6 мкм составляет =6 10-3 см-1. Термообработка образцов при 900оС в течение 8 ч не приводит к заметным изменениям электрофизических параметров. Примеры проведения процессов приведены в таблице. В качестве исходного материала может быть использован как нелегированный, так и легированный хромом полуизолирующий арсенид галлия в виде монокристаллических слитков и эпитаксиальных пленок. Предлагаемый способ позволяет получить монокристаллы полуизолирующего арсенида галлия с улучшенной оптической однородностью (1 5%), уменьшенным оптическим поглощением =(5-7) 10-3 см-1 на длине волны =10,6 мкм и повышенной термостабильностью свойств. Такой материал соответствует требованиям современной микро- и оптоэлектроники и пользуется большим спросом как на внутреннем, так и на внешнем рынке.
Класс C30B33/04 с использованием электрических или магнитных полей или облучения потоком частиц
Класс C30B29/42 арсенид галлия